Abstract

This paper proposes and describes an implementation of a photometric stereo-based technique for in vivo assessment of three-dimensional (3D) skin topography in the presence of interreflections. The proposed method illuminates skin with red, green, and blue colored lights and uses the resulting variation in surface gradients to mitigate the effects of interreflections. Experiments were carried out on Caucasian, Asian, and African American subjects to demonstrate the accuracy of our method and to validate the measurements produced by our system. Our method produced significant improvement in 3D surface reconstruction for all Caucasian, Asian, and African American skin types. The results also illustrate the differences in recovered skin topography due to the nondiffuse bidirectional reflectance distribution function (BRDF) for each color illumination used, which also concur with the existing multispectral BRDF data available for skin.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Woodham, “Photometric stereo: a reflectance map technique for determining surface orientation from image intensity,” Proc. SPIE 155, 136–143 (1978).
    [CrossRef]
  2. M. L. Smith and L. N. Smith, “Dynamic photometric stereo-a new technique for moving surface analysis,” Image Vis. Comput. 23, 841–852 (2005).
    [CrossRef]
  3. J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
    [CrossRef]
  4. A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005).
    [CrossRef]
  5. M. Chandraker, F. Kahl, and D. Kriegman, “Reflections on the generalized bas-relief ambiguity,” Comput. Vis. Patt. Recog. 1, 788–795 (2005).
    [CrossRef]
  6. A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999).
    [CrossRef]
  7. D. Forsyth and A. Zisserman, “Mutual illumination,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR '89 (IEEE, 1989), pp. 466–473.
  8. M. Liao, X. Huang, and R. Yang, “Interreflection removal for photometric stereo by using spectrum dependent albedo,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2011), pp. 689–696.
  9. S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” Int. J. Comput. Vis. 6, 173–195 (1991).
    [CrossRef]
  10. T. Yamada, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from image sequence,” in Proceedings of IAPR Workshop on Machine Vision Applications (IAPR MVA Organizing Committee, 1998), pp. 384–387.
  11. A. Matsumoto, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from photometric stereo images with specular reflection and interreflection,” Electr. Eng. Jpn 129, 51–58 (1999).
    [CrossRef]
  12. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
    [CrossRef]
  13. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
    [CrossRef]
  14. T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1825–1832.
  15. M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture using an elastomeric sensor,” in ACM SIGGRAPH 2011 Papers (ACM, 2011), pp. 46:1–46:8.
  16. Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012).
    [CrossRef]
  17. T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco, “Surface enhancement using real-time photometric stereo and reflectance transformation,” in Rendering Techniques (Eurographics Association, 2006), pp. 245–250.
  18. J. A. Paterson, D. Claus, and A. W. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
    [CrossRef]
  19. M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010).
    [CrossRef]
  20. D. E. Barker, “Skin thickness in the human,” Plast. Reconstruct. Surg. 7, 115–116 (1951).
    [CrossRef]
  21. Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24, 183–189 (2002).
    [CrossRef]
  22. V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007).
    [CrossRef]
  23. A. Krishnaswamy and G. V. Baranoski, “A biophysically-based spectral model of light interaction with human skin,” Comput. Graph. Forum 23, 331–340 (2004).
    [CrossRef]
  24. J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, and A. B. Ritter, “Noninvasive light-reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
    [CrossRef]
  25. M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).
  26. K. J. Dana, “BRDF/BTF measurement device,” in Proceedings of International Conference on Computer Vision (IEEE, 2001), pp. 460–466.
  27. K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
    [CrossRef]
  28. S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.
  29. E. Angelopoulou, “The reflectance spectrum of human skin,” Technical report (University of Pennsylvania, 1999).
  30. B. Koch, “A multispectral bidirectional reflectance distribution function study of human skin for improved dismount detection,” Master’s thesis (Air Force Institute of Technology—Graduate School of Engineering and Management, 2011).
  31. B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
    [CrossRef]
  32. C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).
  33. P. D. Burns, “Analysis of image noise in multispectral color acquisition,” Ph.D. thesis (Center for Imaging Science, Rochester Institute of Technology, 1997).
  34. M. V. Newberry, “Increasing precision and accuracy in photometric measurements,” Precision CCD Photometry, ASP Conference Series189, 74–82 (1999).
  35. J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
    [CrossRef]
  36. R. Bazin and J. L. Leveque, “Longitudinal study of skin aging: from microrelief to wrinkles,” Skin Res. Technol 17, 135–140 (2011).
    [CrossRef]
  37. M. Setaro and A. Sparavigna, “Irregularity skin index (ISI): a tool to evaluate skin surface texture,” Skin Res. Technol. 7, 159–163 (2001).
    [CrossRef]
  38. T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007).
    [CrossRef]
  39. P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
    [CrossRef]
  40. E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
    [CrossRef]
  41. M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
    [CrossRef]
  42. S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
    [CrossRef]
  43. P. Besl and H. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
    [CrossRef]
  44. J. Dong and M. Chantler, “Estimating parameters of an illumination model for the synthesis of specular surface textures,” in Computer and Information Technology (IEEE Computer Society, 2004), pp. 716–721.
  45. Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

2012 (2)

Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012).
[CrossRef]

B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
[CrossRef]

2011 (2)

R. Bazin and J. L. Leveque, “Longitudinal study of skin aging: from microrelief to wrinkles,” Skin Res. Technol 17, 135–140 (2011).
[CrossRef]

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
[CrossRef]

2010 (2)

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010).
[CrossRef]

2008 (1)

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

2007 (2)

V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007).
[CrossRef]

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007).
[CrossRef]

2005 (5)

J. A. Paterson, D. Claus, and A. W. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005).
[CrossRef]

M. Chandraker, F. Kahl, and D. Kriegman, “Reflections on the generalized bas-relief ambiguity,” Comput. Vis. Patt. Recog. 1, 788–795 (2005).
[CrossRef]

M. L. Smith and L. N. Smith, “Dynamic photometric stereo-a new technique for moving surface analysis,” Image Vis. Comput. 23, 841–852 (2005).
[CrossRef]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[CrossRef]

2004 (1)

A. Krishnaswamy and G. V. Baranoski, “A biophysically-based spectral model of light interaction with human skin,” Comput. Graph. Forum 23, 331–340 (2004).
[CrossRef]

2002 (2)

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24, 183–189 (2002).
[CrossRef]

2001 (2)

J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
[CrossRef]

M. Setaro and A. Sparavigna, “Irregularity skin index (ISI): a tool to evaluate skin surface texture,” Skin Res. Technol. 7, 159–163 (2001).
[CrossRef]

1999 (5)

A. Matsumoto, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from photometric stereo images with specular reflection and interreflection,” Electr. Eng. Jpn 129, 51–58 (1999).
[CrossRef]

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
[CrossRef]

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

J. F. Federici, N. Guzelsu, H. C. Lim, G. Jannuzzi, T. Findley, H. R. Chaudhry, and A. B. Ritter, “Noninvasive light-reflection technique for measuring soft-tissue stretch,” Appl. Opt. 38, 6653–6660 (1999).
[CrossRef]

A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999).
[CrossRef]

1994 (1)

M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

1992 (1)

P. Besl and H. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[CrossRef]

1991 (1)

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” Int. J. Comput. Vis. 6, 173–195 (1991).
[CrossRef]

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

1978 (1)

R. J. Woodham, “Photometric stereo: a reflectance map technique for determining surface orientation from image intensity,” Proc. SPIE 155, 136–143 (1978).
[CrossRef]

1951 (1)

D. E. Barker, “Skin thickness in the human,” Plast. Reconstruct. Surg. 7, 115–116 (1951).
[CrossRef]

Adelson, E. H.

M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture using an elastomeric sensor,” in ACM SIGGRAPH 2011 Papers (ACM, 2011), pp. 46:1–46:8.

Ambrisco, B.

T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco, “Surface enhancement using real-time photometric stereo and reflectance transformation,” in Rendering Techniques (Eurographics Association, 2006), pp. 245–250.

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

Angelopoulou, E.

E. Angelopoulou, “The reflectance spectrum of human skin,” Technical report (University of Pennsylvania, 1999).

Atkinson, G. A.

M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010).
[CrossRef]

Bamber, J.

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

Baranoski, G. V.

A. Krishnaswamy and G. V. Baranoski, “A biophysically-based spectral model of light interaction with human skin,” Comput. Graph. Forum 23, 331–340 (2004).
[CrossRef]

Barker, D. E.

D. E. Barker, “Skin thickness in the human,” Plast. Reconstruct. Surg. 7, 115–116 (1951).
[CrossRef]

Barun, V.

V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[CrossRef]

Bazin, R.

R. Bazin and J. L. Leveque, “Longitudinal study of skin aging: from microrelief to wrinkles,” Skin Res. Technol 17, 135–140 (2011).
[CrossRef]

Belhumeur, P.

A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999).
[CrossRef]

Bernstein, L.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Besl, P.

P. Besl and H. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[CrossRef]

Black, D.

J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
[CrossRef]

Bloemen, M. C.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
[CrossRef]

Brightman, L.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Burns, P. D.

P. D. Burns, “Analysis of image noise in multispectral color acquisition,” Ph.D. thesis (Center for Imaging Science, Rochester Institute of Technology, 1997).

Chandraker, M.

M. Chandraker, F. Kahl, and D. Kriegman, “Reflections on the generalized bas-relief ambiguity,” Comput. Vis. Patt. Recog. 1, 788–795 (2005).
[CrossRef]

Chantler, M.

J. Dong and M. Chantler, “Estimating parameters of an illumination model for the synthesis of specular surface textures,” in Computer and Information Technology (IEEE Computer Society, 2004), pp. 716–721.

Chao, C.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Chapas, A.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Chaudhry, H. R.

Chen, T.

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1825–1832.

Choe, W.

B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
[CrossRef]

Chou, K. Y.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Chou, P. S.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Claus, D.

J. A. Paterson, D. Claus, and A. W. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

Cole, F.

M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture using an elastomeric sensor,” in ACM SIGGRAPH 2011 Papers (ACM, 2011), pp. 46:1–46:8.

Coutts, L.

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

Dabis, R.

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

Dana, K. J.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
[CrossRef]

K. J. Dana, “BRDF/BTF measurement device,” in Proceedings of International Conference on Computer Vision (IEEE, 2001), pp. 460–466.

Diridollou, S.

J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
[CrossRef]

Dong, J.

J. Dong and M. Chantler, “Estimating parameters of an illumination model for the synthesis of specular surface textures,” in Computer and Information Technology (IEEE Computer Society, 2004), pp. 716–721.

Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

Dong, X.

Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

Ennen, J.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

Epstein, R.

A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999).
[CrossRef]

Farooq, A. R.

A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005).
[CrossRef]

Federici, J. F.

Findley, T.

Fitzgibbon, A. W.

J. A. Paterson, D. Claus, and A. W. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

Forsyth, D.

D. Forsyth and A. Zisserman, “Mutual illumination,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR '89 (IEEE, 1989), pp. 466–473.

Friedman, P. M.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Fujimura, T.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007).
[CrossRef]

Gall, Y.

J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
[CrossRef]

Gelb, D.

T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco, “Surface enhancement using real-time photometric stereo and reflectance transformation,” in Rendering Techniques (Eurographics Association, 2006), pp. 245–250.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[CrossRef]

Geronemus, R. G.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Gershon, R.

M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Goesele, M.

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1825–1832.

Greenberg, D. P.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.

Guzelsu, N.

Haketa, K.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007).
[CrossRef]

Hale, E. K.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Hansen, M. F.

M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010).
[CrossRef]

Harland, C.

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

Hopermann, H.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

Hoppe, U.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

Hotta, M.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007).
[CrossRef]

Hseih, B. C.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Hsueh, F. L.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Hu, X.

Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

Huang, X.

M. Liao, X. Huang, and R. Yang, “Interreflection removal for photometric stereo by using spectrum dependent albedo,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2011), pp. 689–696.

Hunzeker, C.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Hwang, K.

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24, 183–189 (2002).
[CrossRef]

Ikeuchi, K.

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” Int. J. Comput. Vis. 6, 173–195 (1991).
[CrossRef]

Ivanov, A.

V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007).
[CrossRef]

Iwan, L. S.

M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Jannuzzi, G.

Jaspers, S.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

Johnson, M. K.

M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture using an elastomeric sensor,” in ACM SIGGRAPH 2011 Papers (ACM, 2011), pp. 46:1–46:8.

Kahl, F.

M. Chandraker, F. Kahl, and D. Kriegman, “Reflections on the generalized bas-relief ambiguity,” Comput. Vis. Patt. Recog. 1, 788–795 (2005).
[CrossRef]

Kanade, T.

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” Int. J. Comput. Vis. 6, 173–195 (1991).
[CrossRef]

Karen, J. K.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Kauvar, A. N. B.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Kim, C.

B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
[CrossRef]

Kitahara, T.

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007).
[CrossRef]

Koch, B.

B. Koch, “A multispectral bidirectional reflectance distribution function study of human skin for improved dismount detection,” Master’s thesis (Air Force Institute of Technology—Graduate School of Engineering and Management, 2011).

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[CrossRef]

Koenderink, J. J.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
[CrossRef]

Kriegman, D.

M. Chandraker, F. Kahl, and D. Kriegman, “Reflections on the generalized bas-relief ambiguity,” Comput. Vis. Patt. Recog. 1, 788–795 (2005).
[CrossRef]

Krishnaswamy, A.

A. Krishnaswamy and G. V. Baranoski, “A biophysically-based spectral model of light interaction with human skin,” Comput. Graph. Forum 23, 331–340 (2004).
[CrossRef]

Lafortune, E. P. F.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.

Lagarde, J. M.

J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
[CrossRef]

Lee, S.

B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
[CrossRef]

Lee, Y.

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24, 183–189 (2002).
[CrossRef]

Leveque, J. L.

R. Bazin and J. L. Leveque, “Longitudinal study of skin aging: from microrelief to wrinkles,” Skin Res. Technol 17, 135–140 (2011).
[CrossRef]

Liang, Z.

Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

Liao, M.

M. Liao, X. Huang, and R. Yang, “Interreflection removal for photometric stereo by using spectrum dependent albedo,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2011), pp. 689–696.

Lim, H. C.

Lim, J.

B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
[CrossRef]

Lin, R. J.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Lunderstdt, R.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

Malzbender, T.

T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco, “Surface enhancement using real-time photometric stereo and reflectance transformation,” in Rendering Techniques (Eurographics Association, 2006), pp. 245–250.

Marschner, S. R.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.

Matsumoto, A.

A. Matsumoto, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from photometric stereo images with specular reflection and interreflection,” Electr. Eng. Jpn 129, 51–58 (1999).
[CrossRef]

McKay, H.

P. Besl and H. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[CrossRef]

Middelkoop, E.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
[CrossRef]

Midha, S.

A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005).
[CrossRef]

Nayar, S. K.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
[CrossRef]

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” Int. J. Comput. Vis. 6, 173–195 (1991).
[CrossRef]

Newberry, M. V.

M. V. Newberry, “Increasing precision and accuracy in photometric measurements,” Precision CCD Photometry, ASP Conference Series189, 74–82 (1999).

Ozawa, S.

A. Matsumoto, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from photometric stereo images with specular reflection and interreflection,” Electr. Eng. Jpn 129, 51–58 (1999).
[CrossRef]

T. Yamada, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from image sequence,” in Proceedings of IAPR Workshop on Machine Vision Applications (IAPR MVA Organizing Committee, 1998), pp. 384–387.

Park, B. K.

B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
[CrossRef]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

Paterson, J. A.

J. A. Paterson, D. Claus, and A. W. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

Payonk, G.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Raj, A.

M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture using an elastomeric sensor,” in ACM SIGGRAPH 2011 Papers (ACM, 2011), pp. 46:1–46:8.

Ritter, A. B.

Rouvrais, C.

J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
[CrossRef]

Saito, H.

A. Matsumoto, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from photometric stereo images with specular reflection and interreflection,” Electr. Eng. Jpn 129, 51–58 (1999).
[CrossRef]

T. Yamada, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from image sequence,” in Proceedings of IAPR Workshop on Machine Vision Applications (IAPR MVA Organizing Committee, 1998), pp. 384–387.

Sauermann, G.

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

Seidel, H.-P.

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1825–1832.

Setaro, M.

M. Setaro and A. Sparavigna, “Irregularity skin index (ISI): a tool to evaluate skin surface texture,” Skin Res. Technol. 7, 159–163 (2001).
[CrossRef]

Skover, G. R.

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Smith, L.

Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012).
[CrossRef]

Smith, L. N.

M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010).
[CrossRef]

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

M. L. Smith and L. N. Smith, “Dynamic photometric stereo-a new technique for moving surface analysis,” Image Vis. Comput. 23, 841–852 (2005).
[CrossRef]

A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005).
[CrossRef]

Smith, M.

Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012).
[CrossRef]

Smith, M. L.

M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010).
[CrossRef]

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

M. L. Smith and L. N. Smith, “Dynamic photometric stereo-a new technique for moving surface analysis,” Image Vis. Comput. 23, 841–852 (2005).
[CrossRef]

A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005).
[CrossRef]

Snow, D.

A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999).
[CrossRef]

Sparavigna, A.

M. Setaro and A. Sparavigna, “Irregularity skin index (ISI): a tool to evaluate skin surface texture,” Skin Res. Technol. 7, 159–163 (2001).
[CrossRef]

Sun, J.

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

Torrance, K. E.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.

Tu, H. Y.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[CrossRef]

Ulashchik, V.

V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007).
[CrossRef]

van der Wal, M. B.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
[CrossRef]

van Gerven, M. S.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
[CrossRef]

van Ginneken, B.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
[CrossRef]

Verhaegen, P. D.

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
[CrossRef]

Volotovskaya, A.

V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007).
[CrossRef]

Vrhel, M. J.

M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Warr, R.

Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012).
[CrossRef]

Wei, V.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

Weiss, E. T.

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Westin, S. H.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.

Wilburn, B.

T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco, “Surface enhancement using real-time photometric stereo and reflectance transformation,” in Rendering Techniques (Eurographics Association, 2006), pp. 245–250.

Woodham, R. J.

R. J. Woodham, “Photometric stereo: a reflectance map technique for determining surface orientation from image intensity,” Proc. SPIE 155, 136–143 (1978).
[CrossRef]

Xu, J.

Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

Yamada, T.

T. Yamada, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from image sequence,” in Proceedings of IAPR Workshop on Machine Vision Applications (IAPR MVA Organizing Committee, 1998), pp. 384–387.

Yang, R.

M. Liao, X. Huang, and R. Yang, “Interreflection removal for photometric stereo by using spectrum dependent albedo,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2011), pp. 689–696.

Yuille, A.

A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999).
[CrossRef]

Zhou, Y.

Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012).
[CrossRef]

Zisserman, A.

D. Forsyth and A. Zisserman, “Mutual illumination,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR '89 (IEEE, 1989), pp. 466–473.

ACM Trans. Graph. (1)

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real-world surfaces,” ACM Trans. Graph. 18, 1–34 (1999).
[CrossRef]

Appl. Opt. (1)

Arch. Dermatol. (1)

E. T. Weiss, A. Chapas, L. Brightman, C. Hunzeker, E. K. Hale, J. K. Karen, L. Bernstein, and R. G. Geronemus, “Successful treatment of atrophic postoperative and traumatic scarring with carbon dioxide ablative fractional resurfacing: quantitative volumetric scar improvement,” Arch. Dermatol. 146, 133–140 (2010).
[CrossRef]

Color Res. Appl. (1)

M. J. Vrhel, R. Gershon, and L. S. Iwan, “Measurement and analysis of object reflectance spectra,” Color Res. Appl. 19, 4–9 (1994).

Comput. Graph. Forum (2)

A. Krishnaswamy and G. V. Baranoski, “A biophysically-based spectral model of light interaction with human skin,” Comput. Graph. Forum 23, 331–340 (2004).
[CrossRef]

J. A. Paterson, D. Claus, and A. W. Fitzgibbon, “BRDF and geometry capture from extended inhomogeneous samples using flash photography,” Comput. Graph. Forum 24, 383–391 (2005).
[CrossRef]

Comput. Ind. (1)

A. R. Farooq, M. L. Smith, L. N. Smith, and S. Midha, “Dynamic photometric stereo for on line quality control of ceramic tiles,” Comput. Ind. 56, 918–934 (2005).
[CrossRef]

Comput. Vis. Image Underst. (1)

M. F. Hansen, G. A. Atkinson, L. N. Smith, and M. L. Smith, “3D face reconstructions from photometric stereo using near infrared and visible light,” Comput. Vis. Image Underst. 114, 942–951 (2010).
[CrossRef]

Comput. Vis. Patt. Recog. (1)

M. Chandraker, F. Kahl, and D. Kriegman, “Reflections on the generalized bas-relief ambiguity,” Comput. Vis. Patt. Recog. 1, 788–795 (2005).
[CrossRef]

Dermatol. Surg. (1)

P. M. Friedman, G. R. Skover, G. Payonk, A. N. B. Kauvar, and R. G. Geronemus, “3D in vivo optical skin imaging for topographical quantitative assessment of non-ablative laser technology,” Dermatol. Surg. 28, 199–204 (2002).
[CrossRef]

Electr. Eng. Jpn (1)

A. Matsumoto, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from photometric stereo images with specular reflection and interreflection,” Electr. Eng. Jpn 129, 51–58 (1999).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

P. Besl and H. McKay, “A method for registration of 3-D shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992).
[CrossRef]

Image Vis. Comput. (1)

M. L. Smith and L. N. Smith, “Dynamic photometric stereo-a new technique for moving surface analysis,” Image Vis. Comput. 23, 841–852 (2005).
[CrossRef]

Int. J. Comput. Vis. (2)

S. K. Nayar, K. Ikeuchi, and T. Kanade, “Shape from interreflections,” Int. J. Comput. Vis. 6, 173–195 (1991).
[CrossRef]

A. Yuille, D. Snow, R. Epstein, and P. Belhumeur, “Determining generative models of objects under varying illumination: shape and albedo from multiple images using SVD and integrability,” Int. J. Comput. Vis. 35, 203–222 (1999).
[CrossRef]

Int. J. Cosmet. Sci. (1)

T. Fujimura, K. Haketa, M. Hotta, and T. Kitahara, “Global and systematic demonstration for the practical usage of a direct in vivo measurement system to evaluate wrinkles,” Int. J. Cosmet. Sci. 29, 423–436 (2007).
[CrossRef]

J. Am. Acad. Dermatol. (1)

M. C. Bloemen, M. S. van Gerven, M. B. van der Wal, P. D. Verhaegen, and E. Middelkoop, “An objective device for measuring surface roughness of skin and scars,” J. Am. Acad. Dermatol. 64, 706–715 (2011).
[CrossRef]

J. Appl. Spectrosc. (1)

V. Barun, A. Ivanov, A. Volotovskaya, and V. Ulashchik, “Absorption spectra and light penetration depth of normal and pathologically altered human skin,” J. Appl. Spectrosc. 74, 430–439 (2007).
[CrossRef]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef]

J. Phys. D (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543–2555 (2005).
[CrossRef]

Mach. Vis. Appl. (1)

Y. Zhou, M. Smith, L. Smith, and R. Warr, “Combinatorial photometric stereo and its application in 3D modeling of melanoma,” Mach. Vis. Appl. 23, 1029–1045 (2012).
[CrossRef]

Plast. Reconstruct. Surg. (1)

D. E. Barker, “Skin thickness in the human,” Plast. Reconstruct. Surg. 7, 115–116 (1951).
[CrossRef]

Proc. SPIE (2)

R. J. Woodham, “Photometric stereo: a reflectance map technique for determining surface orientation from image intensity,” Proc. SPIE 155, 136–143 (1978).
[CrossRef]

B. K. Park, W. Choe, J. Lim, S. Lee, and C. Kim, “Color correction with edge preserving and minimal SNR decrease using multi-layer decomposition,” Proc. SPIE 8296, 829613 (2012).
[CrossRef]

Skin Res. Technol (1)

R. Bazin and J. L. Leveque, “Longitudinal study of skin aging: from microrelief to wrinkles,” Skin Res. Technol 17, 135–140 (2011).
[CrossRef]

Skin Res. Technol. (4)

M. Setaro and A. Sparavigna, “Irregularity skin index (ISI): a tool to evaluate skin surface texture,” Skin Res. Technol. 7, 159–163 (2001).
[CrossRef]

S. Jaspers, H. Hopermann, G. Sauermann, U. Hoppe, R. Lunderstdt, and J. Ennen, “Rapid in vivo measurement of the topography of human skin by active image triangulation using a digital micromirror device,” Skin Res. Technol. 5, 195–207 (1999).
[CrossRef]

J. M. Lagarde, C. Rouvrais, D. Black, S. Diridollou, and Y. Gall, “Skin topography measurement by interference fringe projection: a technical validation,” Skin Res. Technol. 7, 112–121 (2001).
[CrossRef]

J. Sun, M. L. Smith, L. N. Smith, L. Coutts, R. Dabis, C. Harland, and J. Bamber, “Reflectance of human skin using colour photometric stereo: with particular application to pigmented lesion analysis,” Skin Res. Technol. 14, 173–179 (2008).
[CrossRef]

Surg. Radiol. Anat. (1)

Y. Lee and K. Hwang, “Skin thickness of Korean adults,” Surg. Radiol. Anat. 24, 183–189 (2002).
[CrossRef]

Other (15)

T. Chen, M. Goesele, and H.-P. Seidel, “Mesostructure from specularity,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2006), pp. 1825–1832.

M. K. Johnson, F. Cole, A. Raj, and E. H. Adelson, “Microgeometry capture using an elastomeric sensor,” in ACM SIGGRAPH 2011 Papers (ACM, 2011), pp. 46:1–46:8.

T. Yamada, H. Saito, and S. Ozawa, “3D reconstruction of skin surface from image sequence,” in Proceedings of IAPR Workshop on Machine Vision Applications (IAPR MVA Organizing Committee, 1998), pp. 384–387.

D. Forsyth and A. Zisserman, “Mutual illumination,” in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989. Proceedings CVPR '89 (IEEE, 1989), pp. 466–473.

M. Liao, X. Huang, and R. Yang, “Interreflection removal for photometric stereo by using spectrum dependent albedo,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2011), pp. 689–696.

K. J. Dana, “BRDF/BTF measurement device,” in Proceedings of International Conference on Computer Vision (IEEE, 2001), pp. 460–466.

C. Chao, H. Y. Tu, K. Y. Chou, P. S. Chou, F. L. Hsueh, V. Wei, R. J. Lin, and B. C. Hseih, “Crosstalk metrics and the characterization of 1.1 μm-pixel CIS,” in Proceedings of International Image Sensor Workshop (IISS, 2011).

P. D. Burns, “Analysis of image noise in multispectral color acquisition,” Ph.D. thesis (Center for Imaging Science, Rochester Institute of Technology, 1997).

M. V. Newberry, “Increasing precision and accuracy in photometric measurements,” Precision CCD Photometry, ASP Conference Series189, 74–82 (1999).

T. Malzbender, B. Wilburn, D. Gelb, and B. Ambrisco, “Surface enhancement using real-time photometric stereo and reflectance transformation,” in Rendering Techniques (Eurographics Association, 2006), pp. 245–250.

S. R. Marschner, S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P. Greenberg, “Image-based BRDF measurement including human skin,” in Proceedings of Eurographics Workshop on Rendering (Eurographics Association, 1999), pp. 139–152.

E. Angelopoulou, “The reflectance spectrum of human skin,” Technical report (University of Pennsylvania, 1999).

B. Koch, “A multispectral bidirectional reflectance distribution function study of human skin for improved dismount detection,” Master’s thesis (Air Force Institute of Technology—Graduate School of Engineering and Management, 2011).

J. Dong and M. Chantler, “Estimating parameters of an illumination model for the synthesis of specular surface textures,” in Computer and Information Technology (IEEE Computer Society, 2004), pp. 716–721.

Z. Liang, J. Dong, X. Dong, X. Hu, and J. Xu, “Relations between surface gradient maps in frequency domain and application in diffuse component detection,” in Global Congress on Intelligent Systems (IEEE Computer Society, 2009), pp. 221–225.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Multispectral reflectance of different skin types (NCSU skin reflectance data [25]).

Fig. 2.
Fig. 2.

(a) Schematics of our photometric stereo-based 3D capture system. (b) 3D skin macro and microrelief on the back of the hand acquired using our photometric stereo device.

Fig. 3.
Fig. 3.

(a) CCD spectral response. (b) Triband filter response. (c) Spectral response of the LEDs.

Fig. 4.
Fig. 4.

(a) Forehead wrinkle directly imaged using photometric stereo device. (b) Corresponding replica. (c) 3D reconstruction of skin images taken in vivo.

Fig. 5.
Fig. 5.

(a) 2D profiles obtained for the wrinkled region from each color light and our proposed method. (The wrinkle lies between 6 and 8 mm in length.) (b)–(f) RMS error in height from red, green, blue, and white light and our algorithm, respectively. (The dotted rectangular region points out the location of wrinkle.)

Fig. 6.
Fig. 6.

(a) Over and underestimation of slope from each (R, G, B) light at the wrinkled region (valley). The mid region data value rise represents lowest point of the valley of the wrinkle where the slope changes sign. (b) Increased scale to show differences in slope from one side of the valley.

Fig. 7.
Fig. 7.

Gradient map obtained from red and green light. (The center cluster of a lighter shading represents the group of gradients from red light.)

Fig. 8.
Fig. 8.

Movement of gradients from red light toward the green. The gradient set is calculated in the region bounded between quadratic and linear fits.

Tables (2)

Tables Icon

Table 1. Mean and Standard Deviation (SD) of RMS Error in Height for Each Skin Type and the Corresponding Light Used

Tables Icon

Table 2. Mean and SD of l2-norm Error for All Skin Types and the Corresponding Light Used

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

BRDF(θi,ϕi,θo,ϕo,x,y,λ),
Z=S(x,y).
grad(S(x,y))=(p(x,y),q(x,y))=[z(x,y)x,z(x,y)y].
F(p(x,y))=P(c,r)=icH(c,r),
F(q(x,y))=Q(c,r)=irH(c,r),
rP(c,r)=cQ(c,r).
P1s(x1,y1)P1s(xm,yn)andQ1s(x1,y1)Q1s(xm,yn),
|rP(c,r)cQ(c,r)|.

Metrics