Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adaptive boundaryless finite-difference method

Not Accessible

Your library or personal account may give you access

Abstract

The boundaryless beam propagation method uses a mapping function to transform the infinite real space into a finite-size computational domain [Opt. Lett. 21, 4 (1996)]. This leads to a bounded field that avoids the artificial reflections produced by the computational window. However, the method suffers from frequency aliasing problems, limiting the physical region to be sampled. We propose an adaptive boundaryless method that concentrates the higher density of sampling points in the region of interest. The method is implemented in Cartesian and cylindrical coordinate systems. It keeps the same advantages of the original method but increases accuracy and is not affected by frequency aliasing.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Boundaryless finite-difference method for three-dimensional beam propagation

Manuel Guizar-Sicairos and Julio C. Gutiérrez-Vega
J. Opt. Soc. Am. A 23(4) 866-871 (2006)

Computationally efficient finite-difference modal method for the solution of Maxwell’s equations

Igor Semenikhin and Mauro Zanuccoli
J. Opt. Soc. Am. A 30(12) 2531-2538 (2013)

Analysis of optical waveguide structures by use of a combined finite-difference/finite-difference time-domain method

Jon W. Wallace and Michael A. Jensen
J. Opt. Soc. Am. A 19(3) 610-619 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved