Abstract

Herein, the ability to create arbitrarily patterned circular polarized optical devices is demonstrated by using cholesteric liquid crystal polymer. Photoalignment with polarized ultraviolet light is utilized to create aligned cholesteric liquid crystal films. Two different methods, thermal annealing and solvent rinse, are utilized for patterning cholesteric liquid crystal films over large areas. The patterned cholesteric liquid crystal films are measured using a Mueller matrix imaging polarimeter, and the polarization properties, including depolarization index, circular diattenuation (CD), and circular retardance are derived. Patterned nonlinearly polarized optical devices can be fabricated with feature sizes as small as 20 μm with a CD of 0.812±0.015. Circular polarizing filters based on polymer cholesteric liquid crystal films have applications in three-dimensional displays, medical imaging, polarimetry, and interferometry.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Lee, H. Y. Lin, and C. H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18, 27079–27094 (2010).
    [CrossRef]
  2. K. Twietmeyer, R. Chipman, A. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16, 21339–21354 (2008).
    [CrossRef]
  3. G. Nordin, J. Meier, P. Deguzman, and M. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  4. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005).
    [CrossRef]
  5. V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007).
    [CrossRef]
  6. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010).
    [CrossRef]
  7. N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
    [CrossRef]
  8. C. K. Harnett and H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002).
    [CrossRef]
  9. Y. L. Zhou and D. J. Klotzkin, “Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 μm,” Appl. Opt. 47, 3555–3560 (2008).
    [CrossRef]
  10. K. Bachman, J. Peltzer, P. Flammer, T. Furtak, R. Collins, and R. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20, 1308–1319 (2012).
    [CrossRef]
  11. J. Peltzer, P. Flammer, T. Furtak, R. Collins, and R. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express 19, 18072–18079 (2011).
    [CrossRef]
  12. V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011).
    [CrossRef]
  13. R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18, 25815–25824 (2010).
    [CrossRef]
  14. L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
    [CrossRef]
  15. G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
    [CrossRef]
  16. R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
    [CrossRef]
  17. A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
    [CrossRef]
  18. I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
    [CrossRef]
  19. B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
    [CrossRef]
  20. J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
    [CrossRef]
  21. O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
    [CrossRef]
  22. M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
    [CrossRef]
  23. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).
  24. G. Myhre and S. Pau, “Imaging capability of patterned liquid crystals,” Appl. Opt. 48, 6152–6158 (2009).
    [CrossRef]
  25. G. Myhre, A. Sayyad, and S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18, 27777–27786 (2010).
    [CrossRef]
  26. J. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
    [CrossRef]
  27. R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 1995).
  28. D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).
  29. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).
  30. J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
    [CrossRef]
  31. S. Y. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [CrossRef]
  32. G. Q. Zhang, X. S. Zhou, and Y. Huang, “Influence of polymerization on the cholesteric structure in ethyl-cyanoethyl cellulose/acrylic acid solutions,” Polymer 44, 2137–2141(2003).
    [CrossRef]
  33. S. Chandrasekhar and J. Shashidhara Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
    [CrossRef]
  34. P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).
  35. B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
    [CrossRef]

2012 (1)

2011 (3)

2010 (5)

2009 (1)

2008 (3)

2007 (1)

2006 (1)

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

2005 (3)

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44, 6861–6868 (2005).
[CrossRef]

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

2003 (3)

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

G. Q. Zhang, X. S. Zhou, and Y. Huang, “Influence of polymerization on the cholesteric structure in ethyl-cyanoethyl cellulose/acrylic acid solutions,” Polymer 44, 2137–2141(2003).
[CrossRef]

2002 (1)

2000 (1)

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

1999 (2)

G. Nordin, J. Meier, P. Deguzman, and M. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[CrossRef]

L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[CrossRef]

1996 (2)

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

S. Y. Lu and R. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
[CrossRef]

1995 (1)

J. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
[CrossRef]

1992 (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

1971 (1)

S. Chandrasekhar and J. Shashidhara Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

Bachman, K.

Bannister, R.

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Barberi, R.

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

Bechtold, I. H.

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

Bermak, A.

Bonvent, J. J.

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

Boogaard, L.

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Boussaid, F.

Brock, N.

Broer, D.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Bryan-Brown, G. P.

L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[CrossRef]

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Callegari, A. C.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar and J. Shashidhara Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

Chaudhari, P.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Chigrinov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Chigrinov, V. G.

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010).
[CrossRef]

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Chipman, R.

Collins, R.

Craighead, H. G.

De Santo, M. P.

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

Deguzman, P.

Doyle, J. P.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Elsner, A.

Engheta, N.

Flammer, P.

Fujio, K.

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Furtak, T.

Galligan, E. A.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Gardiner, I.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Gruev, V.

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).

Harding, R.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Harnett, C. K.

Haslam, S.

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Hayes, J.

Hegde, G.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
[CrossRef]

Hollingsworth, R.

Huang, Y.

G. Q. Zhang, X. S. Zhou, and Y. Huang, “Influence of polymerization on the cholesteric structure in ethyl-cyanoethyl cellulose/acrylic acid solutions,” Polymer 44, 2137–2141(2003).
[CrossRef]

Jones, M.

Katoh, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Kawatsuki, N.

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Kim, D. H.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Kitely, I.

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Klotzkin, D. J.

Komitov, L.

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
[CrossRef]

L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[CrossRef]

Kozenkov, V. M.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Kozinkov, V.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Kurioz, Y.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Kurochkin, O.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Kwok, H. S.

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

Kwon, S. B.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Lacey, J. L.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Lang, N. D.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Lazarus, N.

Lee, C. T.

Leewis, C.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Lien, S. C.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Lin, H. Y.

Liu, Y. G.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Lu, M.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Lu, S. Y.

Lub, J.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Ma, J.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Mahajan, M. P.

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

McMaster, T. J.

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Meier, J.

Millerd, J.

Myhre, G.

Nakagawa, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Nakano, H.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Nordin, G.

North-Morris, M.

Novak, M.

Odahara, S.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Okazaki, N.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Oliverira, E. A.

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

Ortu, A.

Oswald, P.

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).

Ouskova, E.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Park, S. K.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Parri, O.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Pau, S.

Peltzer, J.

Perkins, R.

Perrett, T.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Pezzaniti, J.

J. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
[CrossRef]

Pidduck, A. J.

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Pieranski, P.

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).

Rasing, T.

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

Rexnikov, Y.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Rosenblatt, C.

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

Saitoh, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Sakai, K.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Satoh, H.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Sayyad, A.

Schadt, M.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Schmitt, K.

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Shashidhara Prasad, J.

S. Chandrasekhar and J. Shashidhara Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

Shiota, Y.

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Skjonnemand, K.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Smout, A. B. J.

L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[CrossRef]

Steenbakkers, J.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

Tereshchenko, O.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Tsai, C. H.

Twietmeyer, K.

Van der Spiegel, J.

van der Zande, B.

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

VanNasdale, D.

Vovk, R.

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Wen, B.

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

Wood, E. L.

L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[CrossRef]

Wu, S. T.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).

Wyant, J.

Xuan, L.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Yang, D. K.

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).

Yoon, H. J.

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Zhang, G. Q.

G. Q. Zhang, X. S. Zhou, and Y. Huang, “Influence of polymerization on the cholesteric structure in ethyl-cyanoethyl cellulose/acrylic acid solutions,” Polymer 44, 2137–2141(2003).
[CrossRef]

Zhao, X.

Zhao, Y.

Zheng, Z. G.

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

Zhou, X. S.

G. Q. Zhang, X. S. Zhou, and Y. Huang, “Influence of polymerization on the cholesteric structure in ethyl-cyanoethyl cellulose/acrylic acid solutions,” Polymer 44, 2137–2141(2003).
[CrossRef]

Zhou, Y. L.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

G. Hegde and L. Komitov, “Periodic anchoring condition for alignment of a short pitch cholesteric liquid crystal in uniform lying helix texture,” Appl. Phys. Lett. 96, 113503 (2010).
[CrossRef]

B. Wen, M. P. Mahajan, and C. Rosenblatt, “Ultrahigh-resolution liquid crystal display with gray scale,” Appl. Phys. Lett. 76, 1240–1242 (2000).
[CrossRef]

Chem. Lett. (1)

N. Kawatsuki and K. Fujio, “Cooperative reorientation of dichroic dyes dispersed in photo-cross-linkable polymer liquid crystal and application to linear polarizer,” Chem. Lett. 34, 558–559 (2005).
[CrossRef]

Chin. Phys. B (1)

J. Ma, Z. G. Zheng, Y. G. Liu, and L. Xuan, “Electro-optical properties of polymer stabilized cholesteric liquid crystal film,” Chin. Phys. B 20, 024212 (2011).
[CrossRef]

J. Appl. Phys. (2)

L. Komitov, G. P. Bryan-Brown, E. L. Wood, and A. B. J. Smout, “Alignment of cholesteric liquid crystals using periodic anchoring,” J. Appl. Phys. 86, 3508–3511 (1999).
[CrossRef]

B. van der Zande, J. Steenbakkers, J. Lub, C. Leewis, and D. Broer, “Mass transport phenomena during lithographic polymerization of nematic monomers monitored with interferometry,” J. Appl. Phys. 97, 123519 (2005).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vac. Sci. Technol. A (1)

A. J. Pidduck, G. P. Bryan-Brown, S. Haslam, R. Bannister, I. Kitely, T. J. McMaster, and L. Boogaard, “Atomic force microscopy studies of rubbed polyimide surfaces used for liquid crystal alignment,” J. Vac. Sci. Technol. A 14, 1723–1728 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155–2164 (1992).
[CrossRef]

Liq. Cryst. (1)

I. H. Bechtold, M. P. De Santo, J. J. Bonvent, E. A. Oliverira, R. Barberi, and T. Rasing, “Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment,” Liq. Cryst. 30, 591–598 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

S. Chandrasekhar and J. Shashidhara Prasad, “Theory of rotatory dispersion of cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 14, 115–128 (1971).
[CrossRef]

O. Kurochkin, E. Ouskova, Y. Rexnikov, Y. Kurioz, O. Tereshchenko, R. Vovk, D. H. Kim, S. K. Park, and S. B. Kwon, “Light-controlled alignment of cholesteric liquid crystals on photosensitive materials,” Mol. Cryst. Liq. Cryst. 453, 333–341 (2006).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

J. P. Doyle, P. Chaudhari, J. L. Lacey, E. A. Galligan, S. C. Lien, A. C. Callegari, N. D. Lang, M. Lu, Y. Nakagawa, H. Nakano, N. Okazaki, S. Odahara, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, and Y. Shiota, “Ion beam alignment for liquid crystal display fabrication,” Nucl. Instrum. Methods Phys. Res. B 206, 467–471(2003).
[CrossRef]

Opt. Eng. (1)

J. Pezzaniti and R. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558–1568 (1995).
[CrossRef]

Opt. Express (9)

K. Twietmeyer, R. Chipman, A. Elsner, Y. Zhao, and D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16, 21339–21354 (2008).
[CrossRef]

V. Gruev, A. Ortu, N. Lazarus, J. Van der Spiegel, and N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007).
[CrossRef]

X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010).
[CrossRef]

R. Perkins and V. Gruev, “Signal-to-noise analysis of Stokes parameters in division of focal plane polarimeters,” Opt. Express 18, 25815–25824 (2010).
[CrossRef]

C. T. Lee, H. Y. Lin, and C. H. Tsai, “Designs of broadband and wide-view patterned polarizers for stereoscopic 3D displays,” Opt. Express 18, 27079–27094 (2010).
[CrossRef]

G. Myhre, A. Sayyad, and S. Pau, “Patterned color liquid crystal polymer polarizers,” Opt. Express 18, 27777–27786 (2010).
[CrossRef]

J. Peltzer, P. Flammer, T. Furtak, R. Collins, and R. Hollingsworth, “Ultra-high extinction ratio micropolarizers using plasmonic lenses,” Opt. Express 19, 18072–18079 (2011).
[CrossRef]

V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011).
[CrossRef]

K. Bachman, J. Peltzer, P. Flammer, T. Furtak, R. Collins, and R. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20, 1308–1319 (2012).
[CrossRef]

Polymer (1)

G. Q. Zhang, X. S. Zhou, and Y. Huang, “Influence of polymerization on the cholesteric structure in ethyl-cyanoethyl cellulose/acrylic acid solutions,” Polymer 44, 2137–2141(2003).
[CrossRef]

Proc. SPIE (1)

R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, and K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008).
[CrossRef]

Other (5)

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, 2008).

R. Chipman, “Polarimetry,” in OSA Handbook of Optics (McGraw-Hill, 1995).

D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 1999).

P. Oswald and P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Methods of patterning Ch-LCP film fabrication process (schematic: distances and sizes are not to scale).

Fig. 2.
Fig. 2.

Transmission spectra of (a) patterned and (b) nonpatterned regions, and the images of the (c) R811 Thermal, (d) RMM1036 Thermal, and (e) RMM1036 Solvent samples. The left-hand side of image (light background) is taken with the sample between parallel linear polarizers, and the right-hand side of image (dark background) is taken with the sample between crossed linear polarizers.

Fig. 3.
Fig. 3.

Polarization properties of the (a) R811 Thermal, (b) RMM1036 Thermal, and (c) RMM1036 Solvent samples.

Fig. 4.
Fig. 4.

(a) CD and (b) CR versus wavelength.

Fig. 5.
Fig. 5.

CD versus line width plots of the (a) R811 Thermal, (b) RMM1036 Thermal, and (c) RMM1036 Solvent samples. The dashed curves represent the curve-fitted differences in CD between patterned and nonpatterned regions.

Fig. 6.
Fig. 6.

Surface profiles of the Ch-LCP samples analyzed using the white light interferometer.

Fig. 7.
Fig. 7.

SEM images of (a) 176.7 μm, (b) 111.4 μm, (c) 39.4 μm, and (d) 15.6 μm lines for the RMM1036 Solvent sample are taken at a tilted angle of 45°. Cross-sectional SEM images of (e) 157.7 μm, (f) 88.3 μm, and (g) 31.3 μm lines are also shown. The pitch of the periodic Ch-LCP layers is displayed in (h).

Tables (1)

Tables Icon

Table 1. Summary of Critical Parameters in Three Samples

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M=(M0,0M0,1M0,2M0,3M1,0M1,1M1,2M1,3M2,0M2,1M2,2M2,3M3,0M3,1M3,2M3,3).
DI(M)=(i,jMi,j2)M0,023M0,0.
CD(M)=M0,3M0,0.
λ=n×P=nHTP×x,
M=MΔMRMD,

Metrics