Abstract

Porous Vycor glass with nano-sized pores is transparent in the visible region and is often used in colorimetric chemical sensing, when it is impregnated with selectively reacting reagents. However, it has some disadvantages in its use, since changes in the humidity of ambient air strongly affect the transmission. In this work, we analyzed the transparency change during the drying process to correlate the turbidity of the glass with the amount of water in it. The transparency change in the visible region takes place for the duration of the drying and is found to be dependent on the inverse 4th power of the wavelength (1/λ4), which implies that Rayleigh-type scattering takes place during the drying process. Based on the above observation, it is shown that the transitory white turbidity of nanoporous glasses during the drying process can be interpreted consistently and quantitatively analyzed by a simple Rayleigh scattering mechanism.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
    [CrossRef]
  2. T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
    [CrossRef]
  3. Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
    [CrossRef]
  4. A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
    [CrossRef]
  5. T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
    [CrossRef]
  6. D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
    [CrossRef]
  7. D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
    [CrossRef]
  8. A. A. Evstrapov and N. A. Esikova, “Study of porous glasses by the methods of optical spectroscopy,” J. Opt. Technol. 75, 266–270 (2008).
    [CrossRef]
  9. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 31–39.
  10. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).
  11. P. R. Wakeling, “What is Vycor glass?” Appl. Opt. 18, 3208–3210 (1979).
  12. J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
    [CrossRef]
  13. J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
    [CrossRef]
  14. G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
    [CrossRef]
  15. T. M. Shaw, “Movement of a drying front in a porous material,” in Material Research Society Symposium Proceedings, C. J. Brinker, D. E. Clark, and D. R. Ulrich, ed., Better Ceramics Through Chemistry II (Materials Research Society, 1986), Vol. 73, pp. 215–223.
  16. T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674. (1987).
    [CrossRef]
  17. D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A: Math. Gen. 16, 3365–3376 (1983).
    [CrossRef]

2008

2007

Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
[CrossRef]

2000

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

1999

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

1998

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

1995

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

1993

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

1990

G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
[CrossRef]

1987

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674. (1987).
[CrossRef]

1986

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

1983

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A: Math. Gen. 16, 3365–3376 (1983).
[CrossRef]

1979

1964

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

Abeles, B.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Deckman, H. W.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Dollimore, D.

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

Esikova, N. A.

Evstrapov, A. A.

Guilleux, A.

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

Hayashi, T.

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

Heal, G. R.

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

Herbolzheimer, E.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 31–39.

Liu, J.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Maruo, Y. Y.

Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
[CrossRef]

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

Novikov, A. F.

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

Ohyama, T.

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

Page, J. H.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Rabinovich, E. M.

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

Rouquerol, F.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Rouquerol, J.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Scherer, G. W.

G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
[CrossRef]

Shaw, T. M.

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674. (1987).
[CrossRef]

T. M. Shaw, “Movement of a drying front in a porous material,” in Material Research Society Symposium Proceedings, C. J. Brinker, D. E. Clark, and D. R. Ulrich, ed., Better Ceramics Through Chemistry II (Materials Research Society, 1986), Vol. 73, pp. 215–223.

Sing, K.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Tanaka, T.

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

Wakeling, P. R.

Weitz, D. A.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Wilkinson, D.

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A: Math. Gen. 16, 3365–3376 (1983).
[CrossRef]

Willemsen, J. F.

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A: Math. Gen. 16, 3365–3376 (1983).
[CrossRef]

Wood, D. L.

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

Zemskii, V. I.

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

Appl. Opt.

J. Appl. Chem.

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

J. Ceram. Am. Soc.

G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
[CrossRef]

J. Non-Cryst. Solids

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

J. Opt. Technol.

J. Phys. A: Math. Gen.

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A: Math. Gen. 16, 3365–3376 (1983).
[CrossRef]

Phys. Rev. E

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

Phys. Rev. Lett.

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674. (1987).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Proc. SPIE

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

Sens. Actuators B

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detection system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
[CrossRef]

Other

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 31–39.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

T. M. Shaw, “Movement of a drying front in a porous material,” in Material Research Society Symposium Proceedings, C. J. Brinker, D. E. Clark, and D. R. Ulrich, ed., Better Ceramics Through Chemistry II (Materials Research Society, 1986), Vol. 73, pp. 215–223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Change in UV-visible-near-IR light transmission spectra of a porous Vycor glass chip after drying for 0, 15, 30, 45, 60, 75, and 90 min, immediately after removal from ultrapure water immersion for 2 h at room temperature.

Fig. 2.
Fig. 2.

Changes in the common logarithm of the transmission (which is proportional to the turbidity τ) as a function of the inverse 4th power of wavelength (1/λ4). The slope initially decreases gradually, then becomes steeper, and recovers again gradually. The pore filling fraction (f) with water is estimated from the absorbance peak at around a wavelength of 1900 nm, normalized by the initial maximum value measured immediately after the removal from immersion.

Fig. 3.
Fig. 3.

Time dependence of the slope β of turbidity (τ) versus 1/λ4 plots and of the absorbance peak (α1900) at around a wavelength of 1900 nm. The slope changes remarkably as the time passes. Initially a small value of 1.01×106μm3, it then increases to the maximum value of 8.81×106μm3, and then decreases and saturates to the value of 8.11×107μm3, which is a little smaller than the starting value.

Fig. 4.
Fig. 4.

Slope β in the 350–800 nm range as a function of the pore filling fraction f extracted from the peak absorbance at around 1900 nm. The slope reaches its peak value of about 8.81×106μm3 at about f=0.6.

Fig. 5.
Fig. 5.

Volumetric adsorption isotherm for nitrogen on porous Vycor glass. The horizontal axis shows the ratio of the pressure to the saturated pressure of the nitrogen gas at 77 K. The specific surface area as measured from the BET plot from 0.02 to 0.5P/P0 is 207m2/g, which coincides with the specifications for the glass [11].

Fig. 6.
Fig. 6.

Pore size distribution of porous Vycor glass obtained from the Dollimore–Heal analysis [6] of the nitrogen desorption isotherm.

Fig. 7.
Fig. 7.

Scatterer’s effective radius (rsca) and number density (N) as a function of the pore filling fraction. The effective radius of Rayleigh scatterers is initially about 6.9 nm, then becomes the maximum at about 9.4 nm, and finally reduces to its minimum of about 3.2 nm. Correspondingly, the number density of scatterers starts with a value of 2.20×1017cm3, then becomes the minimum of 8.67×1016cm3, and finally approaches the maximum of 2.16×1018cm3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=Iout/Iin=exp(N·Csca·d)=exp(τ·d),
Csca=(24π3V12/λ4)·{(m21)/(m2+2)}2,
τ=loge(1/T)/d=N·Csca=β/λ4,

Metrics