Abstract

We report direct observation of lateral focal patterns through an acrylic material to investigate the effects of aberrations caused by a planar dielectric interface. Numerical analyses based on vectorial Huygens–Fresnel diffraction theory were also performed to examine the behavior of three-dimensional point spread functions. Experimental and numerical results showed agreement of the behavior of the peak position in the focal patterns with changes in the interface position. Our approach has the potential to predict the effects of aberrations in confocal laser scanning microscopes and super-resolution applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
    [CrossRef]
  2. M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
    [CrossRef]
  3. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
    [CrossRef]
  4. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
    [CrossRef]
  5. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  6. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
    [CrossRef]
  7. H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994).
    [CrossRef]
  8. C. J. de Grauw, J. M. Vroom, H. T. M. van der Voort, and H. C. Gerritsen, “Imaging properties in two-photon excitation microscopy and effects of refractive-index mismatch in thick specimens,” Appl. Opt. 38, 5995–6003 (1999).
    [CrossRef]
  9. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959).
    [CrossRef]
  10. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959).
  11. A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561–B1565 (1965).
    [CrossRef]
  12. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
    [CrossRef]
  13. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
    [CrossRef]
  14. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
    [CrossRef]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  16. T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
    [CrossRef]
  17. Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33, 2326–2328 (2008).
    [CrossRef]
  18. S. Sato and Y. Kozawa, “Hollow vortex beams,” J. Opt. Soc. Am. A 26, 142–146 (2009).
    [CrossRef]
  19. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12, 325–332 (1995).
    [CrossRef]
  20. P. Török, P. Varga, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field I,” J. Opt. Soc. Am. A 12, 2136–2144 (1995).
    [CrossRef]
  21. P. Török, P. Varga, A. Konkol, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: structure of the electromagnetic field II,” J. Opt. Soc. Am. A 13, 2232–2238 (1996).
    [CrossRef]
  22. T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994).
    [CrossRef]
  23. T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
    [CrossRef]
  24. R. Juškaitis and T. Wilson, “The measurement of the amplitude point spread function of microscope objective lens,” J. Microsc. 189, 8–11 (1998).
    [CrossRef]
  25. A. S. Marathay and J. F. McCalmont, “Vector diffraction theory for electromagnetic waves,” J. Opt. Soc. Am. A 18, 2585–2593 (2001).
    [CrossRef]
  26. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005), Chap. 3.
  27. H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17, 14367–14373 (2009).
    [CrossRef]

2013

2009

2008

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

Y. Kozawa and S. Sato, “Dark-spot formation by vector beams,” Opt. Lett. 33, 2326–2328 (2008).
[CrossRef]

2006

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

2003

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

2001

A. S. Marathay and J. F. McCalmont, “Vector diffraction theory for electromagnetic waves,” J. Opt. Soc. Am. A 18, 2585–2593 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

2000

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000).
[CrossRef]

1999

1998

R. Juškaitis and T. Wilson, “The measurement of the amplitude point spread function of microscope objective lens,” J. Microsc. 189, 8–11 (1998).
[CrossRef]

1997

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

1996

1995

1994

H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994).
[CrossRef]

T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994).
[CrossRef]

1993

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

1965

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561–B1565 (1965).
[CrossRef]

1959

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959).

Ando, T.

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

Boivin, A.

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561–B1565 (1965).
[CrossRef]

Booker, G. R.

Booth, M. J.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Brown, T. G.

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

de Grauw, C. J.

Dierolf, V.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Fukuchi, N.

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

Gerritsen, H. C.

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005), Chap. 3.

Hamilton, D. K.

T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994).
[CrossRef]

Hänninen, P.

H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994).
[CrossRef]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

Hell, S. W.

H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994).
[CrossRef]

Higdon, P. D.

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

Hirao, K.

Inoue, T.

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17, 14367–14373 (2009).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

Inouye, H.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Itoh, H.

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17, 14367–14373 (2009).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

Jacobsen, H.

H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994).
[CrossRef]

Jain, H.

Juškaitis, R.

R. Juškaitis and T. Wilson, “The measurement of the amplitude point spread function of microscope objective lens,” J. Microsc. 189, 8–11 (1998).
[CrossRef]

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994).
[CrossRef]

Kawata, Y.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Konkol, A.

Kozawa, Y.

Laczik, Z.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Marathay, A. S.

Matsumoto, N.

H. Itoh, N. Matsumoto, and T. Inoue, “Spherical aberration correction suitable for a wavefront controller,” Opt. Express 17, 14367–14373 (2009).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

McCalmont, J. F.

McDonald, J. P.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Mistry, V. R.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Mitsuyu, T.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Miura, K.

Miyata, S.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Nakabayashi, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Nakano, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Ohtake, Y.

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

Qiu, J.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Ray, K. E.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Rea, N. P.

T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994).
[CrossRef]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959).

Sakakura, M.

Sato, S.

Schwertner, M.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

Shimotsuma, Y.

Soini, E.

H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994).
[CrossRef]

Stelzer, E. H. K.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

Stone, A.

Török, P.

van der Voort, H. T. M.

Varga, P.

Vroom, J. M.

Wilson, T.

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

R. Juškaitis and T. Wilson, “The measurement of the amplitude point spread function of microscope objective lens,” J. Microsc. 189, 8–11 (1998).
[CrossRef]

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994).
[CrossRef]

Wolf, E.

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561–B1565 (1965).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959).

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959).
[CrossRef]

Yalisove, S. M.

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

Youngworth, K. S.

Appl. Opt.

Appl. Phys. B

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “The focus of light—theoretical calculation and experimental tomographic reconstruction,” Appl. Phys. B 72, 109–113 (2001).
[CrossRef]

Appl. Phys. Lett.

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, “Photowritten optical waveguides in various glasses with ultrashort pulse laser,” Appl. Phys. Lett. 71, 3329–3331 (1997).
[CrossRef]

M. J. Booth, M. Schwertner, T. Wilson, M. Nakano, Y. Kawata, M. Nakabayashi, and S. Miyata, “Predictive aberration correction for multilayer optical data storage,” Appl. Phys. Lett. 88, 031109 (2006).
[CrossRef]

J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, “Femtosecond pulsed laser direct write production of nano- and microfluidic channels,” Appl. Phys. Lett. 88, 183113 (2006).
[CrossRef]

T. Ando, Y. Ohtake, T. Inoue, H. Itoh, N. Matsumoto, and N. Fukuchi, “Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures,” Appl. Phys. Lett. 92, 021116 (2008).
[CrossRef]

J. Microsc.

R. Juškaitis and T. Wilson, “The measurement of the amplitude point spread function of microscope objective lens,” J. Microsc. 189, 8–11 (1998).
[CrossRef]

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc. 169, 391–405 (1993).
[CrossRef]

H. Jacobsen, P. Hänninen, E. Soini, and S. W. Hell, “Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy,” J. Microsc. 176, 226–230 (1994).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

T. Wilson, R. Juškaitis, N. P. Rea, and D. K. Hamilton, “Fibre optic interference and confocal microscopy,” Opt. Commun. 110, 1–6 (1994).
[CrossRef]

T. Wilson, R. Juškaitis, and P. D. Higdon, “The imaging of dielectric point scatterers in conventional and confocal polarization microscopes,” Opt. Commun. 141, 298–313 (1997).
[CrossRef]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot,” Opt. Commun. 179, 1–7 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

A. Boivin and E. Wolf, “Electromagnetic field in the neighborhood of the focus of a coherent beam,” Phys. Rev. 138, B1561–B1565 (1965).
[CrossRef]

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Proc. R. Soc. Lond. Ser. A

E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. Lond. Ser. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. Ser. A 253, 358–379 (1959).

Other

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of focusing through a dielectric interface. Incident light has a spherical wavefront in the first medium (refractive index n0) and propagates in the z-direction. The origin of the z axis, O, is chosen to be the geometrical focus position in the absence of the interface. The interface position is denoted as zint, and the refractive index is uniformly nm for z>zint.

Fig. 2.
Fig. 2.

Experimental setup for direct observation of 3D-PSFs. The solid lines indicate the optical path of the incident laser light illuminating an acrylic material. The focusing depth was controlled by moving the objective lens with a piezoelectric actuator stage. The dashed lines represent the path of fluorescence to be observed.

Fig. 3.
Fig. 3.

Lateral focal patterns in the xz direction of a light beam tightly focused by a N.A.=0.9 objective lens when the dielectric interface was placed at zint=20μm. (a) PSF calculated in absence of dielectric interface (no aberration), (b) experimentally observed focal pattern, (c) vectorial Huygens–Fresnel calculation, and (d) Török’s representation. In (c) and (d), the grayscale is inverted to clearly show low-intensity parts.

Fig. 4.
Fig. 4.

Focal profile along optical axes on observed focal patterns. The horizontal axis is shown in units of λ. The solid gray line indicates the calculation result obtained by the vectorial Huygens–Fresnel theory, and the solid black line is the Török representation. The dashed line is the intensity profile obtained by the experiment, where arrows indicate the locations of the shoulders.

Fig. 5.
Fig. 5.

Lateral focal patterns in the xz direction of a light beam tightly focused by a N.A.=0.9 objective lens for different positions of the dielectric interface. (a) Calculated with vectorial Huygens–Fresnel theory, (b) calculated with Török’s representation, and (c) experimental results. The left edge of each pattern corresponds to the position of the dielectric interface.

Fig. 6.
Fig. 6.

Dependence of peak position shift from geometrical focus on dielectric interface positions. Axes are shown in units of λ. Open triangles, open circles, and closed squares indicate the peak position obtained by the vectorial Huygens–Fresnel representation, Török’s representation, and experimental results, respectively. The dashed line indicates the behavior of the peak position in the absence of a dielectric interface.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A(θ)exp(β2sin2θsin2α).
w˜0=n02β2NA21,
R˜int=w˜04+4z˜int24z˜int.
A(r)exp[in0Δl˜(r)]exp(β2n02NA2r˜2r˜2+z˜int2).
e^(θ,ϕ)=(1+cosθ21cosθ2cos2ϕ1cosθ2sin2ϕsinθcosϕ),
E(rs)cosθA(r)e^(θ,ϕ),
E(r)=i2λ2SidSexp(2πinm|Rs|/λ)nm|Rs|×{[1+R^s·n^(rs)]E(rs)[R^s·E(rs)][R^s+n^(rs)]},
n^(r,ϕ)=(sinθcosϕsinθsinϕcosθ),
sinθ=n0r˜n02r˜2+nm2R˜int2,cosθ=nmR˜intn02r˜2+nm2R˜int2.

Metrics