Abstract

A model of the human eye has been developed, including scattering from cataracts inside the nucleus of the lens. The cataracts are modeled as spherical particles with refractive index different from that of the surrounding lens medium. Scattering from the retina is also included in the simulations. Variations of scattering particle diameter, number of particles, and wavelength of the illuminating light are investigated. It is shown that particle size is the most important parameter affecting the scattered light, and that the scattering from the retina can mask the effect of the scattering particles, for some range of the parameters.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).
  2. F. Bettelheim and S. Ali, “Light scattering of normal human lens iii. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41, 1–9 (1985).
    [CrossRef]
  3. K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).
  4. T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
    [CrossRef]
  5. B. Friström and B. L. Lundth, “Colour contrast sensitivity in cataract and pseudophakia,” Acta Ophthalmol. Scand. 78, 506–511 (2000).
  6. T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).
    [CrossRef]
  7. D. de Brouwere, “Corneal light scattering following excimer laser surgery,” Ph.D. thesis (University of Crete, 2008).
  8. T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39, 1437–1445 (1999).
    [CrossRef]
  9. M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
    [CrossRef]
  10. R. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80, 709–725 (2005).
    [CrossRef]
  11. K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).
  12. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  13. W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986).
  14. K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
    [CrossRef]
  15. J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, 2008).
  16. P. J. Diggle, Statistical Analysis of Spatial Point Patterns (A Hodder Arnold, 2003).
  17. J. Antoch and G. Dohnal, eds., “Markov point process: 3D Voronoi tessellations generated by Strauss process,” in Robust 2000, Proceedings of the 11th Summer School JCMF (JCMF, 2001), pp. 1–8.
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications Inc., 1981).
  19. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  20. V. E. Cachorro and L. L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves Appl. 5, 913–926 (1991).
    [CrossRef]
  21. H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004).
    [CrossRef]
  22. S. Marcos, S. A. Burns, and J. C. He, “Model for cone directionality reflectometric measurements based on scattering,” J. Opt. Soc. Am. A 15, 2012–2022 (1998).
    [CrossRef]
  23. S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
    [CrossRef]
  24. C. Bohren and E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH Verlag, 2006).
  25. T. J. van den Berg, L. Franssen, and J. Coppens, “Ocular media clarity and straylight,” in Encyclopedia of the Eye, D. A. Dartt, J. C. Besharse, and R. Dana, eds. (Academic, 2010), Vol. 3, pp. 173–183.
  26. P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
    [CrossRef]
  27. W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).
  28. N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
    [CrossRef]
  29. P. Rodríguez and R. Navarro, “Double-pass versus aberrometric modulation transfer function in green light,” J. Biomed. Opt. 12, 044018 (2007).
    [CrossRef]
  30. F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
    [CrossRef]
  31. P. W. de Waard, J. K. IJspeert, T. J. van den Berg, and P. T. de Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Vis. Sci. 33, 618–625 (1992).
  32. T. J. van den Berg, L. Frassen, B. Krujit, and J. E. Coopens, “History of ocular straylight measurement,” Invest. Ophthalmol. Vis. Sci. 23, 6–20 (2013).
    [CrossRef]

2013 (1)

T. J. van den Berg, L. Frassen, B. Krujit, and J. E. Coopens, “History of ocular straylight measurement,” Invest. Ophthalmol. Vis. Sci. 23, 6–20 (2013).
[CrossRef]

2011 (1)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

2008 (1)

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

2007 (2)

M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[CrossRef]

P. Rodríguez and R. Navarro, “Double-pass versus aberrometric modulation transfer function in green light,” J. Biomed. Opt. 12, 044018 (2007).
[CrossRef]

2006 (1)

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

2005 (1)

R. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80, 709–725 (2005).
[CrossRef]

2004 (3)

W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).

K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[CrossRef]

H. Du, “Mie-scattering calculation,” Appl. Opt. 43, 1951–1956 (2004).
[CrossRef]

2002 (1)

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

2001 (1)

K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).

2000 (1)

B. Friström and B. L. Lundth, “Colour contrast sensitivity in cataract and pseudophakia,” Acta Ophthalmol. Scand. 78, 506–511 (2000).

1999 (2)

S. Marcos and S. A. Burns, “Cone spacing and waveguide properties from cone directionality measurements,” J. Opt. Soc. Am. A 16, 995–1004 (1999).
[CrossRef]

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39, 1437–1445 (1999).
[CrossRef]

1998 (1)

1997 (1)

1995 (1)

T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).
[CrossRef]

1992 (2)

T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
[CrossRef]

P. W. de Waard, J. K. IJspeert, T. J. van den Berg, and P. T. de Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Vis. Sci. 33, 618–625 (1992).

1991 (1)

V. E. Cachorro and L. L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves Appl. 5, 913–926 (1991).
[CrossRef]

1985 (1)

F. Bettelheim and S. Ali, “Light scattering of normal human lens iii. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41, 1–9 (1985).
[CrossRef]

Aggarwal, R.

T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
[CrossRef]

Alcón, E.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

Ali, S.

F. Bettelheim and S. Ali, “Light scattering of normal human lens iii. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41, 1–9 (1985).
[CrossRef]

Applegate, R. A.

W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).

Arjona, M.

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

Artal, P.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

N. López-Gil and P. Artal, “Comparison of double-pass estimates of the retinal-image quality obtained with green and near-infrared light,” J. Opt. Soc. Am. A 14, 961–971 (1997).
[CrossRef]

Atchison, D. A.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Balasubramanian, D.

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

Benito, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

Bettelheim, F.

F. Bettelheim and S. Ali, “Light scattering of normal human lens iii. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41, 1–9 (1985).
[CrossRef]

Bohren, C.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. Bohren and E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH Verlag, 2006).

Burns, S. A.

Cachorro, V. E.

V. E. Cachorro and L. L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves Appl. 5, 913–926 (1991).
[CrossRef]

Clothiaux, E.

C. Bohren and E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH Verlag, 2006).

Coopens, J. E.

T. J. van den Berg, L. Frassen, B. Krujit, and J. E. Coopens, “History of ocular straylight measurement,” Invest. Ophthalmol. Vis. Sci. 23, 6–20 (2013).
[CrossRef]

Coppens, J.

T. J. van den Berg, L. Franssen, and J. Coppens, “Ocular media clarity and straylight,” in Encyclopedia of the Eye, D. A. Dartt, J. C. Besharse, and R. Dana, eds. (Academic, 2010), Vol. 3, pp. 173–183.

Costello, J.

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

Costello, M.

M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[CrossRef]

K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[CrossRef]

K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).

de Brouwere, D.

D. de Brouwere, “Corneal light scattering following excimer laser surgery,” Ph.D. thesis (University of Crete, 2008).

de Casas, A.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

de Jong, P. T.

P. W. de Waard, J. K. IJspeert, T. J. van den Berg, and P. T. de Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Vis. Sci. 33, 618–625 (1992).

de Waard, P. W.

P. W. de Waard, J. K. IJspeert, T. J. van den Berg, and P. T. de Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Vis. Sci. 33, 618–625 (1992).

Díaz-Douton, F.

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

Diggle, P. J.

P. J. Diggle, Statistical Analysis of Spatial Point Patterns (A Hodder Arnold, 2003).

Donnelly, W. J.

W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).

Dorairaj, S.

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

Du, H.

Fowler, W.

M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[CrossRef]

K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[CrossRef]

K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).

Franssen, L.

T. J. van den Berg, L. Franssen, and J. Coppens, “Ocular media clarity and straylight,” in Encyclopedia of the Eye, D. A. Dartt, J. C. Besharse, and R. Dana, eds. (Academic, 2010), Vol. 3, pp. 173–183.

Frassen, L.

T. J. van den Berg, L. Frassen, B. Krujit, and J. E. Coopens, “History of ocular straylight measurement,” Invest. Ophthalmol. Vis. Sci. 23, 6–20 (2013).
[CrossRef]

Freel, C.

M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[CrossRef]

K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[CrossRef]

K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).

Friström, B.

B. Friström and B. L. Lundth, “Colour contrast sensitivity in cataract and pseudophakia,” Acta Ophthalmol. Scand. 78, 506–511 (2000).

Gilliland, K.

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[CrossRef]

K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[CrossRef]

K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).

Güell, J. L.

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

Harrad, R.

T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
[CrossRef]

He, J. C.

Huffman, D.

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

IJspeert, J. K.

P. W. de Waard, J. K. IJspeert, T. J. van den Berg, and P. T. de Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Vis. Sci. 33, 618–625 (1992).

Illian, J.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, 2008).

Johnsen, S.

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[CrossRef]

K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[CrossRef]

Kesavai, R.

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

Krishna, P.

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

Krujit, B.

T. J. van den Berg, L. Frassen, B. Krujit, and J. E. Coopens, “History of ocular straylight measurement,” Invest. Ophthalmol. Vis. Sci. 23, 6–20 (2013).
[CrossRef]

Lane, C.

K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).

López-Gil, N.

Lundth, B. L.

B. Friström and B. L. Lundth, “Colour contrast sensitivity in cataract and pseudophakia,” Acta Ophthalmol. Scand. 78, 506–511 (2000).

Marcos, S.

Marín, J. M.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

Marsack, J. D.

W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).

Metlapally, S.

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

Navarro, R.

P. Rodríguez and R. Navarro, “Double-pass versus aberrometric modulation transfer function in green light,” J. Biomed. Opt. 12, 044018 (2007).
[CrossRef]

Penttinen, A.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, 2008).

Pérez, G. M.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

Pesudovs, K.

W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).

Pujol, J.

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

Ramamurthy, B.

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

Rodríguez, P.

P. Rodríguez and R. Navarro, “Double-pass versus aberrometric modulation transfer function in green light,” J. Biomed. Opt. 12, 044018 (2007).
[CrossRef]

Salcedo, L. L.

V. E. Cachorro and L. L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves Appl. 5, 913–926 (1991).
[CrossRef]

Sarver, E. J.

W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).

Smith, G.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Sparrow, J.

T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
[CrossRef]

Spekreijse, H.

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39, 1437–1445 (1999).
[CrossRef]

Stoyan, D.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, 2008).

Stoyan, H.

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, 2008).

Strong, N.

T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
[CrossRef]

Sucheethra, D.

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

Truscott, R.

R. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80, 709–725 (2005).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications Inc., 1981).

van den Berg, T. J.

T. J. van den Berg, L. Frassen, B. Krujit, and J. E. Coopens, “History of ocular straylight measurement,” Invest. Ophthalmol. Vis. Sci. 23, 6–20 (2013).
[CrossRef]

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39, 1437–1445 (1999).
[CrossRef]

T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).
[CrossRef]

P. W. de Waard, J. K. IJspeert, T. J. van den Berg, and P. T. de Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Vis. Sci. 33, 618–625 (1992).

T. J. van den Berg, L. Franssen, and J. Coppens, “Ocular media clarity and straylight,” in Encyclopedia of the Eye, D. A. Dartt, J. C. Besharse, and R. Dana, eds. (Academic, 2010), Vol. 3, pp. 173–183.

Vatsala, V.

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

Vidyasree, S.

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

Vijaya Kumar, J.

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

Welford, W. T.

W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986).

Williamson, T.

T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
[CrossRef]

Acta Ophthalmol. Scand. (1)

B. Friström and B. L. Lundth, “Colour contrast sensitivity in cataract and pseudophakia,” Acta Ophthalmol. Scand. 78, 506–511 (2000).

Appl. Opt. (1)

Br. J. Ophtalmol. (1)

T. Williamson, N. Strong, J. Sparrow, R. Aggarwal, and R. Harrad, “Contrast sensitivity and glare in cataract using the Pelli–Robson chart,” Br. J. Ophtalmol. 76, 719–722 (1992).
[CrossRef]

Exp. Eye Res. (3)

F. Bettelheim and S. Ali, “Light scattering of normal human lens iii. Relationship between forward and back scatter of whole excised lenses,” Exp. Eye Res. 41, 1–9 (1985).
[CrossRef]

R. Truscott, “Age-related nuclear cataract-oxidation is the key,” Exp. Eye Res. 80, 709–725 (2005).
[CrossRef]

K. Gilliland, C. Freel, S. Johnsen, W. Fowler, and M. Costello, “Distribution, spherical structure and predicted Mie scattering of multilamellar bodies in human age-related nuclear cataracts,” Exp. Eye Res. 79, 563–576 (2004).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (3)

M. Costello, S. Johnsen, K. Gilliland, C. Freel, and W. Fowler, “Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory,” Invest. Ophthalmol. Vis. Sci. 48, 303–312 (2007).
[CrossRef]

P. W. de Waard, J. K. IJspeert, T. J. van den Berg, and P. T. de Jong, “Intraocular light scattering in age-related cataracts,” Invest. Ophthalmol. Vis. Sci. 33, 618–625 (1992).

T. J. van den Berg, L. Frassen, B. Krujit, and J. E. Coopens, “History of ocular straylight measurement,” Invest. Ophthalmol. Vis. Sci. 23, 6–20 (2013).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (1)

F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Güell, and P. Artal, “Comparison of the retinal image quality with a Hartmann–Shack wavefront sensor and a double-pass instrument,” Investig. Ophthalmol. Vis. Sci. 47, 1710–1716 (2006).
[CrossRef]

J. Anat. Soc. India (1)

S. Dorairaj, V. Vatsala, J. Vijaya Kumar, R. Kesavai, D. Sucheethra, and S. Vidyasree, “Morphometric and histological study of human cataract lens,” J. Anat. Soc. India 51, 14–17 (2002).

J. Biomed. Opt. (1)

P. Rodríguez and R. Navarro, “Double-pass versus aberrometric modulation transfer function in green light,” J. Biomed. Opt. 12, 044018 (2007).
[CrossRef]

J. Electromagn. Waves Appl. (1)

V. E. Cachorro and L. L. Salcedo, “New improvements for Mie scattering calculations,” J. Electromagn. Waves Appl. 5, 913–926 (1991).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Refract. Surg. (1)

W. J. Donnelly, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, “Quantifying scatter in Shack–Hartmann images to evaluate nuclear cataract,” J. Refract. Surg. 20, 515–522 (2004).

Mol. Vis. (1)

K. Gilliland, C. Freel, C. Lane, W. Fowler, and M. Costello, “Multilamellar bodies as potential scattering particles in human age-related nuclear cataracts,” Mol. Vis. 7, 120–130 (2001).

Mol. Vision (1)

K. Gilliland, S. Johnsen, S. Metlapally, J. Costello, B. Ramamurthy, P. Krishna, and D. Balasubramanian, “Mie light scattering calculations for an Indian age-related nuclear cataract with a high density of multilamellar bodies,” Mol. Vision 14, 572–582 (2008).

Optom. Vis. Sci. (1)

T. J. van den Berg, “Analysis of intraocular straylight, especially in relation to age,” Optom. Vis. Sci. 72, 52–59 (1995).
[CrossRef]

PLoS One (1)

P. Artal, A. Benito, G. M. Pérez, E. Alcón, A. de Casas, J. Pujol, and J. M. Marín, “An objective scatter index based on double-pass retinal images of a point source to classify cataracts,” PLoS One 6, e16823 (2011).
[CrossRef]

Vision Res. (1)

T. J. van den Berg and H. Spekreijse, “Light scattering model for donor lenses as a function of depth,” Vision Res. 39, 1437–1445 (1999).
[CrossRef]

Other (10)

D. de Brouwere, “Corneal light scattering following excimer laser surgery,” Ph.D. thesis (University of Crete, 2008).

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

W. T. Welford, Aberrations of Optical Systems (IOP Publishing Ltd., 1986).

J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns (Wiley, 2008).

P. J. Diggle, Statistical Analysis of Spatial Point Patterns (A Hodder Arnold, 2003).

J. Antoch and G. Dohnal, eds., “Markov point process: 3D Voronoi tessellations generated by Strauss process,” in Robust 2000, Proceedings of the 11th Summer School JCMF (JCMF, 2001), pp. 1–8.

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications Inc., 1981).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. Bohren and E. Clothiaux, Fundamentals of Atmospheric Radiation (Wiley-VCH Verlag, 2006).

T. J. van den Berg, L. Franssen, and J. Coppens, “Ocular media clarity and straylight,” in Encyclopedia of the Eye, D. A. Dartt, J. C. Besharse, and R. Dana, eds. (Academic, 2010), Vol. 3, pp. 173–183.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Comparison of light intensity distribution between retina and pupil planes when size particle is varying. SP, scattering particles.

Fig. 2.
Fig. 2.

Comparison of light intensity distribution between retina and pupil planes when wavelength is varying. SP, scattering particles.

Fig. 3.
Fig. 3.

Comparison of light intensity distribution between retina and pupil planes when density of particles is varying. SP, scattering particles.

Fig. 4.
Fig. 4.

Comparison between the PSF of the normal human eye using the CIE formula and the PSFs we obtained with our computational model.

Fig. 5.
Fig. 5.

Light distribution in the exit pupil using Stiles–Crawford formula with ρ=0.11 according to Marcos and Burns [23] and the radial profiles of three cases using the computational model.

Fig. 6.
Fig. 6.

Comparison of radial intensity profiles between retina and pupil planes when density of particles is variying. SP, scattering particles.

Tables (1)

Tables Icon

Table 1. Parameters of the Optical Model of the Human Eye

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

xi+1=x+LidrNi
yi+1=y+MidrNi
zi+1=j=0idj,
Δ=FG+[G2cF(1+QN2)]12,
F=c(xi+12+yi+12)
G=Nc(Lixi+1+Miyi+1),
xi+1=xi+1+LiΔ
yi+1=yi+1+MiΔ
zi+1=zi+1+NiΔ.
ni+1Li+1niLi=kα
ni+1Mi+1niMi=kβ
ni+1Ni+1niNi=kγ,
k=ni+1cosIi+1nicosIi,
P(θ)=4πk2σsca(S1(θ)2+S2(θ)2)2,
S1(θ)=n=12n+1n(n+1)[anπn(cosθ)+bnτn(cosθ)]
S2(θ)=n=12n+1n(n+1)[bnπn(cosθ)+anτn(cosθ)]
an=mψn(y)ψn(x)mspψn(y)ψn(x)mψn(y)ζn(x)mspψn(y)ζn(x)
bn=mspψn(y)ψn(x)mψn(y)ψn(x)mspψn(y)ζn(x)mψn(y)ζn(x),
ψn(z)=zjn(z)=π2zJn+12(z)
χn(z)=zyn(z)=π2zYn+12(z)
ζn(z)=zhn(2)(z)=ψn(z)+iχn(z).
σsca=2πa2x2n=1(2n+1)(|an|2+|bn|2)
I=10r2ρ,
Δθ=tan19.09/16=0.186rad
I=10θ2Δθ2,
PSF=[Leq/Egl]gen=10θ3+[5θ2+0.1×pθ]×(1+[A62.5]4)+2.5×103×p

Metrics