L. C. Botten, M. S. Craig, R. C. McPhedran, and J. L. Adams, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).

[CrossRef]

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Prog. Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

G. Granet, A. L. Bakonirina, R. Karyl, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310 (2010).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, and J. L. Adams, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, and J. L. Adams, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).

[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).

[CrossRef]

K. Edee, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings,” J. Opt. Soc. Am. A 28, 2006–2013 (2011).

[CrossRef]

G. Granet, A. L. Bakonirina, R. Karyl, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310 (2010).

[CrossRef]

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Prog. Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

I. Semenikhin, M. Zanuccoli, V. Vyurkov, E. Sangiorgi, and C. Fiegna, “Computational efficient solution of Maxwell’s equations for lamellar gratings,” in PIERS Proceedings, Moscow, Russia, August19–23, 2012, pp. 1521–1525.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).

[CrossRef]

G. Granet, A. L. Bakonirina, R. Karyl, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310 (2010).

[CrossRef]

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Prog. Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).

[CrossRef]

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, 1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, and J. L. Adams, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).

[CrossRef]

Synopsys Sentaurus TCAD Rel. C-2009.06, Synopsys Inc. This is a purified database of silver refractive index that originally comes from: E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Y. Saad, Numerical Methods for Large Eigenvalue Problems, revised edition (SIAM, 2011).

Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (SIAM, 2003).

I. Semenikhin, M. Zanuccoli, V. Vyurkov, E. Sangiorgi, and C. Fiegna, “Computational efficient solution of Maxwell’s equations for lamellar gratings,” in PIERS Proceedings, Moscow, Russia, August19–23, 2012, pp. 1521–1525.

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Prog. Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

I. Semenikhin, M. Zanuccoli, V. Vyurkov, E. Sangiorgi, and C. Fiegna, “Computational efficient solution of Maxwell’s equations for lamellar gratings,” in PIERS Proceedings, Moscow, Russia, August19–23, 2012, pp. 1521–1525.

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, 1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).

[CrossRef]

I. Semenikhin, M. Zanuccoli, V. Vyurkov, E. Sangiorgi, and C. Fiegna, “Computational efficient solution of Maxwell’s equations for lamellar gratings,” in PIERS Proceedings, Moscow, Russia, August19–23, 2012, pp. 1521–1525.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).

[CrossRef]

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, 1998).

I. Semenikhin, M. Zanuccoli, V. Vyurkov, E. Sangiorgi, and C. Fiegna, “Computational efficient solution of Maxwell’s equations for lamellar gratings,” in PIERS Proceedings, Moscow, Russia, August19–23, 2012, pp. 1521–1525.

D. Song and Y. Y. Lu, “High-order finite difference modal method for diffraction gratings,” J. Mod. Opt. 59, 800–808 (2012).

[CrossRef]

D. Song, L. Yuan, and Y. Y. Lu, “Fourier-matching pseudospectral modal method for diffraction gratings,” J. Opt. Soc. Am. A 28, 613–620 (2011).

[CrossRef]

G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999).

[CrossRef]

P. Lalanne and J.-P. Hugonin, “Numerical performance of finite-difference modal methods for the electromagnetic analysis of one-dimensional lamellar gratings,” J. Opt. Soc. Am. A 17, 1033–1042 (2000).

[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).

[CrossRef]

R. H. Morf, “Exponentially convergent and numerically efficient solution of Maxwell’s equations for lamellar gratings,” J. Opt. Soc. Am. A 12, 1043–1056 (1995).

[CrossRef]

K. Edee, “Modal method based on subsectional Gegenbauer polynomial expansion for lamellar gratings,” J. Opt. Soc. Am. A 28, 2006–2013 (2011).

[CrossRef]

G. Granet, A. L. Bakonirina, R. Karyl, A. M. Armeanu, and K. Edee, “Modal analysis of lamellar gratings using the moment method with subsectional basis and adaptive spatial resolution,” J. Opt. Soc. Am. A 27, 1303–1310 (2010).

[CrossRef]

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Bao, Z. Chen, and H. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106–1114 (2005).

[CrossRef]

E. Popov, B. Chernov, M. Nevière, and N. Bonod, “Differential theory: application to highly conducting gratings,” J. Opt. Soc. Am. A 21, 199–206 (2004).

[CrossRef]

K. Watanabe, “Study of the differential theory of lamellar gratings made of highly conducting materials,” J. Opt. Soc. Am. A 23, 69–72 (2006).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

E. Popov and M. Nevière, “Grating theory: new equations in Fourier space leading to fast converging results for TM polarization,” J. Opt. Soc. Am. A 17, 1773–1784 (2000).

[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature (London) 391, 667–669 (1998).

[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, and J. L. Adams, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).

[CrossRef]

A. M. Armeanu, K. Edee, G. Granet, and P. Schiavone, “Modal method based on spline expansion for the electromagnetic analysis of the lamellar grating,” Prog. Electromagn. Res. 106, 243–261 (2010).

[CrossRef]

Synopsys Sentaurus TCAD Rel. C-2009.06, Synopsys Inc. This is a purified database of silver refractive index that originally comes from: E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Y. Saad, Numerical Methods for Large Eigenvalue Problems, revised edition (SIAM, 2011).

Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. (SIAM, 2003).

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM, 1998).

I. Semenikhin, M. Zanuccoli, V. Vyurkov, E. Sangiorgi, and C. Fiegna, “Computational efficient solution of Maxwell’s equations for lamellar gratings,” in PIERS Proceedings, Moscow, Russia, August19–23, 2012, pp. 1521–1525.