Abstract

We present an optofluidic sensor based on an elastomeric two-dimensional (2D) grating integrated inside a hemispherical fluid chamber. A laser beam is diffracted before (reflection) and after (transmission) going through the grating and liquid in the dome chamber. The sensing mechanism is investigated and simulated with a finite-difference time-domain-based electromagnetic method. For the experiment, by analyzing the size, power, and shape of the 2D diffraction patterns, we can retrieve multiple parameters of the liquid, including the refractive index, pressure, and opacity with high sensitivity. We demonstrate that the glucose concentration can be monitored when mixed in a different concentrated phosphate-buffered saline solution. The free-solution binding of bovine serum albumin (BSA) and anti-BSA IgG is detected with this optical sensor. This low-cost, multifunctional, and reliable optofluidic sensor has the potential to be used as a monitor of biofluid, such as blood in hemodialysis.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Misra, “The basics of hemodialysis equipment,” Hemodial. Int. 9, 30–36 (2005).
    [CrossRef]
  2. Y. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
    [CrossRef]
  3. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19, 8200–8207 (2011).
    [CrossRef]
  4. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
    [CrossRef]
  5. N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006).
    [CrossRef]
  6. E. Cibula and D. Ðonlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44, 2736–2744 (2005).
    [CrossRef]
  7. B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000).
    [CrossRef]
  8. J. A. Rogers, R. J. Jackman, O. J. A. Schueller, and G. M. Whitesides, “Elastomeric diffraction gratings as photothermal detectors,” Appl. Opt. 35, 6641–6647 (1996).
    [CrossRef]
  9. T. Ma, H. Liang, G. Chen, B. Poon, H. Jiang, and H. Yu, “Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating,” Opt. Express 21, 11994–12001 (2013).
    [CrossRef]
  10. A. Kocabas, F. Ay, A. Dana, I. Kiyat, and A. Aydinli, “High-refractive-index measurement with an elastomeric grating coupler,” Opt. Lett. 30, 3150–3152 (2005).
    [CrossRef]
  11. K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1–6 (2002).
    [CrossRef]
  12. R. A. Guerrero, S. J. C. Oliva, and J. M. M. Indias, “Fluidic actuation of an elastomeric grating,” Appl. Opt. 51, 5812–5817 (2012).
    [CrossRef]
  13. D. Fourguette, E. Arik, and D. Wilson, “Optical MEMS-based sensor development with applications to microfluidics,” in BioMEMS and Biomedical Nanotechnology, M. Ferrari, R. Bashir, and S. Wereley, eds. (Springer, 2007), Chap. 17, pp. 349–370.
  14. J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
    [CrossRef]
  15. Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
    [CrossRef]
  16. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2004).
  17. E. Coyne and G. M. O’Connor, “Fabrication of silicon-blazed phase diffractive gratings using grey scale gallium implantation with KOH anisotropic etch,” J. Micromech. Microeng. 20, 085037 (2010).
    [CrossRef]
  18. N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
    [CrossRef]
  19. G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008).
    [CrossRef]
  20. H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
    [CrossRef]
  21. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
    [CrossRef]
  22. Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013).
    [CrossRef]
  23. C. Park, K. Joo, S. Kang, and H. Kim, “A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity,” J. Opt. Soc. Korea 15, 329–334 (2011).
    [CrossRef]
  24. S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
    [CrossRef]
  25. J. Hirota and S. Shimizu, “A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus,” J. Virol. Methods 188, 132–138 (2013).
    [CrossRef]

2013 (3)

Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013).
[CrossRef]

J. Hirota and S. Shimizu, “A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus,” J. Virol. Methods 188, 132–138 (2013).
[CrossRef]

T. Ma, H. Liang, G. Chen, B. Poon, H. Jiang, and H. Yu, “Micro-strain sensing using wrinkled stiff thin films on soft substrates as tunable optical grating,” Opt. Express 21, 11994–12001 (2013).
[CrossRef]

2012 (1)

2011 (4)

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. J. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19, 8200–8207 (2011).
[CrossRef]

C. Park, K. Joo, S. Kang, and H. Kim, “A PDMS-coated optical fiber Bragg grating sensor for enhancing temperature sensitivity,” J. Opt. Soc. Korea 15, 329–334 (2011).
[CrossRef]

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

2010 (1)

E. Coyne and G. M. O’Connor, “Fabrication of silicon-blazed phase diffractive gratings using grey scale gallium implantation with KOH anisotropic etch,” J. Micromech. Microeng. 20, 085037 (2010).
[CrossRef]

2008 (2)

Y. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
[CrossRef]

G. Beadie, M. L. Sandrock, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M. Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, and E. Baer, “Tunable polymer lens,” Opt. Express 16, 11847–11857 (2008).
[CrossRef]

2007 (2)

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

2006 (2)

N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006).
[CrossRef]

H. Ren, D. Fox, P. A. Anderson, B. Wu, and S. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006).
[CrossRef]

2005 (4)

2002 (1)

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1–6 (2002).
[CrossRef]

2000 (1)

B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000).
[CrossRef]

1996 (2)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

J. A. Rogers, R. J. Jackman, O. J. A. Schueller, and G. M. Whitesides, “Elastomeric diffraction gratings as photothermal detectors,” Appl. Opt. 35, 6641–6647 (1996).
[CrossRef]

Ali, S. U.

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

Anderson, P. A.

Arik, E.

D. Fourguette, E. Arik, and D. Wilson, “Optical MEMS-based sensor development with applications to microfluidics,” in BioMEMS and Biomedical Nanotechnology, M. Ferrari, R. Bashir, and S. Wereley, eds. (Springer, 2007), Chap. 17, pp. 349–370.

Ay, F.

Aydinli, A.

Baer, E.

Baumberg, J. J.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Beadie, G.

Bornhop, D. J.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

Burns, K.

N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006).
[CrossRef]

Charlton, M. D. B.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Chen, G.

Cheung, E. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Chiang, K. S.

Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013).
[CrossRef]

Chiu, C.

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Cibula, E.

Coyne, E.

E. Coyne and G. M. O’Connor, “Fabrication of silicon-blazed phase diffractive gratings using grey scale gallium implantation with KOH anisotropic etch,” J. Micromech. Microeng. 20, 085037 (2010).
[CrossRef]

Cunningham, B. T.

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

Dana, A.

de Abajo, F. J. G.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Ðonlagic, D.

Fourguette, D.

D. Fourguette, E. Arik, and D. Wilson, “Optical MEMS-based sensor development with applications to microfluidics,” in BioMEMS and Biomedical Nanotechnology, M. Ferrari, R. Bashir, and S. Wereley, eds. (Springer, 2007), Chap. 17, pp. 349–370.

Fox, D.

Gonzalez, R. L.

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Grzybowski, B.

B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000).
[CrossRef]

Guerrero, R. A.

Haag, R.

B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000).
[CrossRef]

Hanada, K.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1–6 (2002).
[CrossRef]

Hiltner, A.

Hirota, J.

J. Hirota and S. Shimizu, “A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus,” J. Virol. Methods 188, 132–138 (2013).
[CrossRef]

Hosokawa, K.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1–6 (2002).
[CrossRef]

Indias, J. M. M.

Jackman, R. J.

J. A. Rogers, R. J. Jackman, O. J. A. Schueller, and G. M. Whitesides, “Elastomeric diffraction gratings as photothermal detectors,” Appl. Opt. 35, 6641–6647 (1996).
[CrossRef]

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Jiang, H.

Jiang, J.

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

Joly, N. Y.

Jones, R. D.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

Joo, K.

Kang, S.

Kazmierczak, T.

Kim, H.

Kim, P.

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Kiyat, I.

Kocabas, A.

Kussrow, A.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

Lagali, N.

N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006).
[CrossRef]

Latham, J. C.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

Lee, H. W.

Lee, L. K.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Lepkowicz, R. S.

Liang, H.

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2004).

Liu, G. L.

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

Ma, T.

Maeda, R.

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1–6 (2002).
[CrossRef]

Markov, D. A.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

Misra, M.

M. Misra, “The basics of hemodialysis equipment,” Hemodial. Int. 9, 30–36 (2005).
[CrossRef]

Munger, R.

N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006).
[CrossRef]

Netti, M. C.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Nuckolls, C.

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

O’Connor, G. M.

E. Coyne and G. M. O’Connor, “Fabrication of silicon-blazed phase diffractive gratings using grey scale gallium implantation with KOH anisotropic etch,” J. Micromech. Microeng. 20, 085037 (2010).
[CrossRef]

Oliva, S. J. C.

Park, C.

Perney, N. M. B.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Ponting, M.

Poon, B.

Prentiss, M. G.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Qin, D.

B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000).
[CrossRef]

Ren, H.

Rogers, J. A.

Russell, P. S. J.

Sandrock, M. L.

Scharrer, M.

Schmidt, M. A.

Schueller, O. J. A.

Shepard, K. L.

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Shimizu, S.

J. Hirota and S. Shimizu, “A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus,” J. Virol. Methods 188, 132–138 (2013).
[CrossRef]

Shirk, J. S.

Sørensen, H. S.

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

Sorgenfrei, S.

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Tang, A.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Tyagi, H.

Uebel, P.

Whitesides, G. M.

B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000).
[CrossRef]

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

J. A. Rogers, R. J. Jackman, O. J. A. Schueller, and G. M. Whitesides, “Elastomeric diffraction gratings as photothermal detectors,” Appl. Opt. 35, 6641–6647 (1996).
[CrossRef]

Wiggins, M. J.

Wilbur, J. L.

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Wilson, D.

D. Fourguette, E. Arik, and D. Wilson, “Optical MEMS-based sensor development with applications to microfluidics,” in BioMEMS and Biomedical Nanotechnology, M. Ferrari, R. Bashir, and S. Wereley, eds. (Springer, 2007), Chap. 17, pp. 349–370.

Wu, B.

Wu, H.

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

Wu, S.

Xu, Z.

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

Yang, Y.

Yeh, Y.

Y. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
[CrossRef]

Yu, H.

Yu, Y.

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Zhang, J.

Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013).
[CrossRef]

Zhang, Q.

Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013).
[CrossRef]

Zhu, T.

Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013).
[CrossRef]

Zimmerman, D.

N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006).
[CrossRef]

Zoorob, M. E.

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

H. Ren and S. Wu, “Variable-focus liquid lens by changing aperture,” Appl. Phys. Lett. 86, 211107 (2005).
[CrossRef]

Chem. Mater. (1)

J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, “Elastomeric optics,” Chem. Mater. 8, 1380–1385 (1996).
[CrossRef]

Hemodial. Int. (1)

M. Misra, “The basics of hemodialysis equipment,” Hemodial. Int. 9, 30–36 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. Zhang, T. Zhu, J. Zhang, and K. S. Chiang, “Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature,” IEEE Photon. Technol. Lett. 25, 1751–1753 (2013).
[CrossRef]

J. Biomed. Opt. (1)

N. Lagali, K. Burns, D. Zimmerman, and R. Munger, “Hemodialysis monitoring in whole blood using transmission and diffuse reflection spectroscopy: a pilot study,” J. Biomed. Opt. 11, 054003 (2006).
[CrossRef]

J. Micromech. Microeng. (2)

K. Hosokawa, K. Hanada, and R. Maeda, “A polydimethylsiloxane (PDMS) deformable diffraction grating for monitoring of local pressure in microfluidic devices,” J. Micromech. Microeng. 12, 1–6 (2002).
[CrossRef]

E. Coyne and G. M. O’Connor, “Fabrication of silicon-blazed phase diffractive gratings using grey scale gallium implantation with KOH anisotropic etch,” J. Micromech. Microeng. 20, 085037 (2010).
[CrossRef]

J. Nanophoton. (1)

Z. Xu, H. Wu, S. U. Ali, J. Jiang, B. T. Cunningham, and G. L. Liu, “Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy,” J. Nanophoton. 5, 053526 (2011).
[CrossRef]

J. Opt. Soc. Korea (1)

J. Virol. Methods (1)

J. Hirota and S. Shimizu, “A new competitive ELISA detects West Nile virus infection using monoclonal antibodies against the precursor-membrane protein of West Nile virus,” J. Virol. Methods 188, 132–138 (2013).
[CrossRef]

Nat. Nanotechnol. (1)

S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y. Yu, P. Kim, C. Nuckolls, and K. L. Shepard, “Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor,” Nat. Nanotechnol. 6, 126–132 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lasers Eng. (1)

Y. Yeh, “Real-time measurement of glucose concentration and average refractive index using a laser interferometer,” Opt. Lasers Eng. 46, 666–670 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

N. M. B. Perney, F. J. G. de Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering,” Phys. Rev. B 76, 035426 (2007).
[CrossRef]

Science (1)

D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, and H. S. Sørensen, “Free-solution, label-free molecular interactions studied by back-scattering interferometry,” Science 317, 1732–1736 (2007).
[CrossRef]

Sens. Actuators A Phys. (1)

B. Grzybowski, D. Qin, R. Haag, and G. M. Whitesides, “Elastomeric optical elements with deformable surface topographies: applications to force measurements, tunable light transmission and light focusing,” Sens. Actuators A Phys. 86, 81–85 (2000).
[CrossRef]

Other (2)

D. R. Lide, Handbook of Chemistry and Physics (CRC Press, 2004).

D. Fourguette, E. Arik, and D. Wilson, “Optical MEMS-based sensor development with applications to microfluidics,” in BioMEMS and Biomedical Nanotechnology, M. Ferrari, R. Bashir, and S. Wereley, eds. (Springer, 2007), Chap. 17, pp. 349–370.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Sketch of the diffraction sensing system. ① Laser, 633 nm, 4 mW, ② backward diffraction screen, ③ forward diffraction screen, ④ liquid, ⑤ elastomeric 2D grating, ⑥ half-dome chamber, ⑦ fluid inlet, ⑧ fluid outlet. (b) Photograph of the diffraction sensing system in measurement. (c) Photograph of the EGS sensor. The inset shows a deformed 2D grating. (d) SEM image of the micropyramids’ array structure on the 2D grating.

Fig. 2.
Fig. 2.

(a) Forward diffraction patterns for the EGS device containing air, water, and glucose aqueous solution with concentration of 10%, 20%, 30%, and 40% by mass. (b) Diffraction angle of order 11 for the EGS device containing glucose solution with concentration of 0% (water, n=1.33), 10% (n=1.348), 20% (n=1.364), 30% (n=1.381). (c) Average power of diffraction orders 10 and 11 for glucose solution with concentration of 0% (water, n=1.33), 10% (n=1.348), 20% (n=1.364), 30% (n=1.381).

Fig. 3.
Fig. 3.

Model of FDTD simulation for forward diffraction of the 2D pyramid array. (a) Perspective view of the 2D pyramid array. (b) Cross-section view of 2D pyramid array and two orthogonal plane-wave sources. The pink arrow indicates the direction of propagation while the blue arrows indicate the polarizations. (c) Calculated forward diffraction pattern in the far field when the refractive index of the environment n is 1. (d) Calculated forward diffraction pattern in the far field when n=1.3. The relative intensity of the electric field as |E|2 is plotted in Log10 scale with color indicated by the color bar.

Fig. 4.
Fig. 4.

FDTD simulation results of the diffraction pattern of pyramids 2D array with different refractive indices of the environment from n=1 to n=1.4. (a) Diffraction angles of orders 10 and 11 from n=1 to n=1.4. (b) Diffraction power of orders 10 and 11. (c) Diffraction power of order 00 from n=1 to n=1.4.

Fig. 5.
Fig. 5.

Power and corresponding refractive index of diffraction order (a) 10 and order (b) 11 for glucose (0%, 10%, 20%, 30%, 40%) in PBS solution (0.1×, 1×, 10×) with different concentrations.

Fig. 6.
Fig. 6.

Schematic of the monitoring pressure setup. ① Laser, 633 nm, 4 mW, ② FDG sensor, ③ backward diffraction screen, ④ photodetector, ⑤ syringe, ⑥ pressure sensor (Honeywell 24PC SMT), ⑦ beaker for waste collection.

Fig. 7.
Fig. 7.

Fluid pressure monitoring plot in 90 s for commercial fluid sensors (blue curve) and EGS sensor (red curve). Dashed lines indicate when major pressure change happened.

Fig. 8.
Fig. 8.

Deformation of elastomeric 2D pyramid grating by injection of fluid. (a) Cross section of the initial grating membrane before the injection of fluid. (b) Cross section of the deformed grating member after fluid of volume ΔV is injected. Assuming uniform strain along the grating membrane, the modified spacing between the pyramids can be calculated from the effective radius of curvature R.

Fig. 9.
Fig. 9.

Monitoring BSA and anti-BSA IgG binding with an EGS sensor by power. The dashed line indicates when the BSA and anti-BSA solutions were mixed.

Tables (1)

Tables Icon

Table 1. Refractive Index, Power of Three Orders, Diffraction Angle of Order 11 for Glucose Solution with Different Concentrations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ndsin(θm)=mλ.
s=Rϕ=Rcos1(12ro2R2).
12ΔVπR33ro4R2(ro6+9ΔV2π2)=0.
mλ=dssin(θm),
ds=ssodo,

Metrics