Abstract

For [J. Opt. Soc. Am. A 28, 483 (2011) [CrossRef]  ], corrected versions of Eqs. (1) and (2) are provided owing to editing errors in the original copy. Full article text and calculations are unchanged.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Toselli, B. Agrawal, and S. Restaino, “Light propagation through anisotropic turbulence,” J. Opt. Soc. Am. A 28, 483–488 (2011).
    [CrossRef]

2011 (1)

I. Toselli, B. Agrawal, and S. Restaino, “Light propagation through anisotropic turbulence,” J. Opt. Soc. Am. A 28, 483–488 (2011).
[CrossRef]

Agrawal, B.

I. Toselli, B. Agrawal, and S. Restaino, “Light propagation through anisotropic turbulence,” J. Opt. Soc. Am. A 28, 483–488 (2011).
[CrossRef]

Restaino, S.

I. Toselli, B. Agrawal, and S. Restaino, “Light propagation through anisotropic turbulence,” J. Opt. Soc. Am. A 28, 483–488 (2011).
[CrossRef]

Toselli, I.

I. Toselli, B. Agrawal, and S. Restaino, “Light propagation through anisotropic turbulence,” J. Opt. Soc. Am. A 28, 483–488 (2011).
[CrossRef]

J. Opt. Soc. Am. A (1)

I. Toselli, B. Agrawal, and S. Restaino, “Light propagation through anisotropic turbulence,” J. Opt. Soc. Am. A 28, 483–488 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D n ( r ) = β · C n 2 · ( Δ x 2 + Δ y 2 ς 2 + Δ z 2 ) γ 2 ,
Φ n ( κ , α ) = A ( α ) · C ˜ n 2 · ς 2 · [ κ z 2 + ς 2 ( κ x 2 + κ y 2 ) ] α 2 .

Metrics