Abstract

A class of models for lateral geniculate nucleus (LGN) on-cell behavior is proposed. The models consist of a linear filter with divisive normalization by root mean square local contrast and include an intrinsic noise density parameter. The properties of these models are shown to match observed LGN behavior: (1) a linear response to low-magnitude stimuli; (2) a linear response without saturation (luxotonic behavior) for zero-contrast stimuli (homogeneous fields) with increasing magnitude; and (3) response saturation for nonzero contrast stimuli with increasing magnitude. The models possess an intrinsic scale for signal-to-noise ratio (SNR). The models show under and supersaturation, as well as saturation, for sinusoidal grating stimuli with increasing contrast and predict that different SNR regimes will cause a single neuron to show different contrast response curves. A companion paper [1] provides a detailed analysis of the full nonlinear response for sinusoidal grating stimuli and circular spot stimuli.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cope, B. Blakeslee, and M. E. McCourt, “Modeling lateral geniculate nucleus response with contrast gain control. Part 2. Analysis,” J. Opt. Soc. Am. A (submitted).
  2. D. H. Hubel, “Single unit activity in the lateral geniculate body and optic tract of unrestrained cats,” J. Physiol. 150, 91–104 (1960).
  3. D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol. 155, 385–398 (1961).
  4. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  5. E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).
  6. A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).
  7. V. Bonin, V. Mante, and M. Carandini, “Nonlinear processing in LGN neurons,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds. (MIT, 2004), pp. 1443–1450.
  8. V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005).
    [CrossRef]
  9. T. Duong and R. D. Freeman, “Spatial frequency-specific contrast adaptation originates in primary visual cortex,” J. Neurophysiol. 98, 187–195 (2007).
    [CrossRef]
  10. V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008).
    [CrossRef]
  11. T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996).
    [CrossRef]
  12. S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
    [CrossRef]
  13. J. W. Peirce, “The potential importance of saturating and supersaturating contrast response functions in visual cortex,” J. Vis. 7(6):13, 1–10 (2007).
    [CrossRef]
  14. G. H. Jacobs and R. L. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vis. Res. 10, 1127–1144 (1970).
    [CrossRef]
  15. R. T. Marrocco, “Maintained activity of monkey optic tract fibers and lateral geniculate nucleus cells,” Vis. Res. 12, 1175–1181 (1972).
    [CrossRef]
  16. J. Papaioannou and A. White, “Maintained activity of lateral geniculate nucleus neurons as a function of background luminance,” Exp. Neurol. 34, 558–566 (1972).
    [CrossRef]
  17. R. T. Marrocco, “Possible neural basis for brightness magnitude estimates,” Brain Res. 86, 128–133 (1975).
    [CrossRef]
  18. R. B. Barlow and R. Verillo, “Brightness sensation in a ganzfeld,” Vis. Res. 16, 1291–1297 (1976).
    [CrossRef]
  19. R. W. Doty, “Tonic retinal influences in primates,” Ann. N.Y. Acad. Sci. 290, 139–151 (1977).
    [CrossRef]
  20. P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).
  21. R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978).
    [CrossRef]
  22. Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).
  23. P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).
  24. S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003).
    [CrossRef]
  25. T. R. Tucker and D. Fitzpatrick, “Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response,” J. Neurosci. 26, 13537–13547 (2006).
    [CrossRef]
  26. H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011).
    [CrossRef]
  27. D. G. Albrecht, W. S. Geisler, and A. M. Crane, “Nonlinear properties of visual cortex neurons: temporal dynamics, stimulus selectivity, neural performance,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), Vol. 1, pp. 747–764.
  28. R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell response to visual stimuli,” Vis. Res. 5, 583–601 (1965).
    [CrossRef]
  29. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).
  30. V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
    [CrossRef]
  31. R. A. Frazor and W. S. Geisler, “Local luminance and contrast in natural images,” Vis. Res. 46, 1585–1598 (2006).
    [CrossRef]
  32. M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nat. Rev. Neurosci. 13, 51–62 (2012).
    [CrossRef]
  33. J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Lawrence Erlbaum Associates, 1980), pp. 177–214.
  34. J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).
  35. G. E. Irvin, V. A. Casagrande, and T. T. Norton, “Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus,” Vis. Neurosci. 10, 363–373 (1993).
    [CrossRef]
  36. J. Kremers and S. Weiss, “Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus),” Vis. Res. 37, 2171–2181 (1997).
    [CrossRef]
  37. A. J. R. White, S. G. Solomon, and P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol. 533, 519–535 (2001).
    [CrossRef]
  38. L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).
  39. X. Xu, A. B. Bonds, and V. A. Casagrande, “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci. 19, 703–711 (2002).
  40. H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).
  41. M. S. Grubb and I. D. Thompson, “Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus,” J. Neurophysiol. 90, 3594–3607 (2003).
    [CrossRef]

2012

M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nat. Rev. Neurosci. 13, 51–62 (2012).
[CrossRef]

2011

H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011).
[CrossRef]

2008

V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008).
[CrossRef]

2007

T. Duong and R. D. Freeman, “Spatial frequency-specific contrast adaptation originates in primary visual cortex,” J. Neurophysiol. 98, 187–195 (2007).
[CrossRef]

J. W. Peirce, “The potential importance of saturating and supersaturating contrast response functions in visual cortex,” J. Vis. 7(6):13, 1–10 (2007).
[CrossRef]

2006

T. R. Tucker and D. Fitzpatrick, “Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response,” J. Neurosci. 26, 13537–13547 (2006).
[CrossRef]

R. A. Frazor and W. S. Geisler, “Local luminance and contrast in natural images,” Vis. Res. 46, 1585–1598 (2006).
[CrossRef]

2005

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005).
[CrossRef]

2004

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

2003

S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003).
[CrossRef]

M. S. Grubb and I. D. Thompson, “Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus,” J. Neurophysiol. 90, 3594–3607 (2003).
[CrossRef]

2002

X. Xu, A. B. Bonds, and V. A. Casagrande, “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci. 19, 703–711 (2002).

2001

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).

A. J. R. White, S. G. Solomon, and P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol. 533, 519–535 (2001).
[CrossRef]

A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).

1998

L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).

1997

J. Kremers and S. Weiss, “Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus),” Vis. Res. 37, 2171–2181 (1997).
[CrossRef]

1996

T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996).
[CrossRef]

1995

H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).

1994

P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).

1993

G. E. Irvin, V. A. Casagrande, and T. T. Norton, “Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus,” Vis. Neurosci. 10, 363–373 (1993).
[CrossRef]

1987

E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).

1984

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

1979

Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).

1978

R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978).
[CrossRef]

1977

R. W. Doty, “Tonic retinal influences in primates,” Ann. N.Y. Acad. Sci. 290, 139–151 (1977).
[CrossRef]

P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).

1976

R. B. Barlow and R. Verillo, “Brightness sensation in a ganzfeld,” Vis. Res. 16, 1291–1297 (1976).
[CrossRef]

1975

R. T. Marrocco, “Possible neural basis for brightness magnitude estimates,” Brain Res. 86, 128–133 (1975).
[CrossRef]

1972

R. T. Marrocco, “Maintained activity of monkey optic tract fibers and lateral geniculate nucleus cells,” Vis. Res. 12, 1175–1181 (1972).
[CrossRef]

J. Papaioannou and A. White, “Maintained activity of lateral geniculate nucleus neurons as a function of background luminance,” Exp. Neurol. 34, 558–566 (1972).
[CrossRef]

1970

G. H. Jacobs and R. L. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vis. Res. 10, 1127–1144 (1970).
[CrossRef]

1966

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).

1965

R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell response to visual stimuli,” Vis. Res. 5, 583–601 (1965).
[CrossRef]

1961

D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol. 155, 385–398 (1961).

1960

D. H. Hubel, “Single unit activity in the lateral geniculate body and optic tract of unrestrained cats,” J. Physiol. 150, 91–104 (1960).

Albrecht, D. G.

D. G. Albrecht, W. S. Geisler, and A. M. Crane, “Nonlinear properties of visual cortex neurons: temporal dynamics, stimulus selectivity, neural performance,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), Vol. 1, pp. 747–764.

Alexander, J.

S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003).
[CrossRef]

Alitto, H. J.

H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011).
[CrossRef]

Barlow, R. B.

R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978).
[CrossRef]

R. B. Barlow and R. Verillo, “Brightness sensation in a ganzfeld,” Vis. Res. 16, 1291–1297 (1976).
[CrossRef]

Bartlett, J. R.

Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).

Blakeslee, B.

D. Cope, B. Blakeslee, and M. E. McCourt, “Modeling lateral geniculate nucleus response with contrast gain control. Part 2. Analysis,” J. Opt. Soc. Am. A (submitted).

Bonds, A. B.

X. Xu, A. B. Bonds, and V. A. Casagrande, “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci. 19, 703–711 (2002).

Bonin, V.

V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005).
[CrossRef]

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “Nonlinear processing in LGN neurons,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds. (MIT, 2004), pp. 1443–1450.

Carandini, M.

M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nat. Rev. Neurosci. 13, 51–62 (2012).
[CrossRef]

V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005).
[CrossRef]

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “Nonlinear processing in LGN neurons,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds. (MIT, 2004), pp. 1443–1450.

Casagrande, V. A.

X. Xu, A. B. Bonds, and V. A. Casagrande, “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci. 19, 703–711 (2002).

G. E. Irvin, V. A. Casagrande, and T. T. Norton, “Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus,” Vis. Neurosci. 10, 363–373 (1993).
[CrossRef]

Cheng, H.

H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).

Chino, Y. M.

H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).

Cope, D.

D. Cope, B. Blakeslee, and M. E. McCourt, “Modeling lateral geniculate nucleus response with contrast gain control. Part 2. Analysis,” J. Opt. Soc. Am. A (submitted).

Crane, A. M.

D. G. Albrecht, W. S. Geisler, and A. M. Crane, “Nonlinear properties of visual cortex neurons: temporal dynamics, stimulus selectivity, neural performance,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), Vol. 1, pp. 747–764.

Derrington, A. M.

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

Dhruv, N. T.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

Doty, R. W.

Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).

R. W. Doty, “Tonic retinal influences in primates,” Ann. N.Y. Acad. Sci. 290, 139–151 (1977).
[CrossRef]

Duong, T.

T. Duong and R. D. Freeman, “Spatial frequency-specific contrast adaptation originates in primary visual cortex,” J. Neurophysiol. 98, 187–195 (2007).
[CrossRef]

Enroth-Cugell, C.

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).

Fitzpatrick, D.

T. R. Tucker and D. Fitzpatrick, “Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response,” J. Neurosci. 26, 13537–13547 (2006).
[CrossRef]

Frazor, R. A.

R. A. Frazor and W. S. Geisler, “Local luminance and contrast in natural images,” Vis. Res. 46, 1585–1598 (2006).
[CrossRef]

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

Freeman, R. D.

T. Duong and R. D. Freeman, “Spatial frequency-specific contrast adaptation originates in primary visual cortex,” J. Neurophysiol. 98, 187–195 (2007).
[CrossRef]

Geisler, W. S.

R. A. Frazor and W. S. Geisler, “Local luminance and contrast in natural images,” Vis. Res. 46, 1585–1598 (2006).
[CrossRef]

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

D. G. Albrecht, W. S. Geisler, and A. M. Crane, “Nonlinear properties of visual cortex neurons: temporal dynamics, stimulus selectivity, neural performance,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), Vol. 1, pp. 747–764.

Grubb, M. S.

M. S. Grubb and I. D. Thompson, “Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus,” J. Neurophysiol. 90, 3594–3607 (2003).
[CrossRef]

Hamamoto, J.

H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).

Heeger, D. J.

M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nat. Rev. Neurosci. 13, 51–62 (2012).
[CrossRef]

Heimel, F.

S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003).
[CrossRef]

Hu, B.

T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996).
[CrossRef]

Hubel, D. H.

D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol. 155, 385–398 (1961).

D. H. Hubel, “Single unit activity in the lateral geniculate body and optic tract of unrestrained cats,” J. Physiol. 150, 91–104 (1960).

Irvin, G. E.

G. E. Irvin, V. A. Casagrande, and T. T. Norton, “Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus,” Vis. Neurosci. 10, 363–373 (1993).
[CrossRef]

Jacobs, G. H.

G. H. Jacobs and R. L. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vis. Res. 10, 1127–1144 (1970).
[CrossRef]

Kaplan, E.

E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).

Kayama, Y.

Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).

Kayser, A.

A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).

Kim, C. B. Y.

P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).

Kiper, D. C.

L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).

Kremers, J.

J. Kremers and S. Weiss, “Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus),” Vis. Res. 37, 2171–2181 (1997).
[CrossRef]

Lennie, P.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

Levitt, J. B.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).

L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).

Li, X.

T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996).
[CrossRef]

Mante, V.

V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005).
[CrossRef]

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “Nonlinear processing in LGN neurons,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds. (MIT, 2004), pp. 1443–1450.

Marrocco, R. T.

R. T. Marrocco, “Possible neural basis for brightness magnitude estimates,” Brain Res. 86, 128–133 (1975).
[CrossRef]

R. T. Marrocco, “Maintained activity of monkey optic tract fibers and lateral geniculate nucleus cells,” Vis. Res. 12, 1175–1181 (1972).
[CrossRef]

Martin, P. R.

A. J. R. White, S. G. Solomon, and P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol. 533, 519–535 (2001).
[CrossRef]

McCourt, M. E.

D. Cope, B. Blakeslee, and M. E. McCourt, “Modeling lateral geniculate nucleus response with contrast gain control. Part 2. Analysis,” J. Opt. Soc. Am. A (submitted).

Miller, K. D.

A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).

Moore, B. D.

H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011).
[CrossRef]

Moore, R. J.

P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).

Movshon, J. A.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).

L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).

Nelson, S. B.

S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003).
[CrossRef]

Norton, T. T.

G. E. Irvin, V. A. Casagrande, and T. T. Norton, “Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus,” Vis. Neurosci. 10, 363–373 (1993).
[CrossRef]

O’ Keefe, L. P.

L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).

Papaioannou, J.

J. Papaioannou and A. White, “Maintained activity of lateral geniculate nucleus neurons as a function of background luminance,” Exp. Neurol. 34, 558–566 (1972).
[CrossRef]

Peirce, J. W.

J. W. Peirce, “The potential importance of saturating and supersaturating contrast response functions in visual cortex,” J. Vis. 7(6):13, 1–10 (2007).
[CrossRef]

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

Priebe, N. J.

A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).

Purpura, K.

E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).

Rathburn, D. L.

H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011).
[CrossRef]

Riso, R. R.

Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).

Robson, J. G.

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Lawrence Erlbaum Associates, 1980), pp. 177–214.

Rodieck, R. W.

R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell response to visual stimuli,” Vis. Res. 5, 583–601 (1965).
[CrossRef]

Schumer, R. A.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).

Shapley, R. M.

L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).

E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).

Sherman, S. M.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).

Shou, T.

T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996).
[CrossRef]

Smith, D. C.

P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).

Smith, E. L.

H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).

Snodderly, D. M.

R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978).
[CrossRef]

Solomon, S. G.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

A. J. R. White, S. G. Solomon, and P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol. 533, 519–535 (2001).
[CrossRef]

Spear, P. D.

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).

P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).

P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).

Swadlow, H. A.

R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978).
[CrossRef]

Thompson, I. D.

M. S. Grubb and I. D. Thompson, “Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus,” J. Neurophysiol. 90, 3594–3607 (2003).
[CrossRef]

Tucker, T. R.

T. R. Tucker and D. Fitzpatrick, “Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response,” J. Neurosci. 26, 13537–13547 (2006).
[CrossRef]

Tumosa, N.

P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).

Ursey, W. M.

H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011).
[CrossRef]

Van Hooser, S. D.

S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003).
[CrossRef]

Verillo, R.

R. B. Barlow and R. Verillo, “Brightness sensation in a ganzfeld,” Vis. Res. 16, 1291–1297 (1976).
[CrossRef]

Weiss, S.

J. Kremers and S. Weiss, “Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus),” Vis. Res. 37, 2171–2181 (1997).
[CrossRef]

White, A.

J. Papaioannou and A. White, “Maintained activity of lateral geniculate nucleus neurons as a function of background luminance,” Exp. Neurol. 34, 558–566 (1972).
[CrossRef]

White, A. J. R.

A. J. R. White, S. G. Solomon, and P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol. 533, 519–535 (2001).
[CrossRef]

Wiesel, T. N.

D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol. 155, 385–398 (1961).

Williams, L. L.

P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).

Xu, X.

X. Xu, A. B. Bonds, and V. A. Casagrande, “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci. 19, 703–711 (2002).

Xue, J.-T.

P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).

Yolton, R. L.

G. H. Jacobs and R. L. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vis. Res. 10, 1127–1144 (1970).
[CrossRef]

Yoshida, K.

H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).

Zhou, Y.

T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996).
[CrossRef]

Ann. N.Y. Acad. Sci.

R. W. Doty, “Tonic retinal influences in primates,” Ann. N.Y. Acad. Sci. 290, 139–151 (1977).
[CrossRef]

Brain Res.

R. T. Marrocco, “Possible neural basis for brightness magnitude estimates,” Brain Res. 86, 128–133 (1975).
[CrossRef]

Exp. Brain Res.

R. B. Barlow, D. M. Snodderly, and H. A. Swadlow, “Intensity coding in primate visual system,” Exp. Brain Res. 31, 163–177 (1978).
[CrossRef]

Exp. Neurol.

J. Papaioannou and A. White, “Maintained activity of lateral geniculate nucleus neurons as a function of background luminance,” Exp. Neurol. 34, 558–566 (1972).
[CrossRef]

J. Neurophysiol.

T. Duong and R. D. Freeman, “Spatial frequency-specific contrast adaptation originates in primary visual cortex,” J. Neurophysiol. 98, 187–195 (2007).
[CrossRef]

A. Kayser, N. J. Priebe, and K. D. Miller, “Contrast-dependent nonlinearities arise locally in a model of contrast-invariant orientation tuning,” J. Neurophysiol. 85, 2130–2149 (2001).

Y. Kayama, R. R. Riso, J. R. Bartlett, and R. W. Doty, “Luxotonic responses of units in macaque striate cortex,” J. Neurophysiol. 42, 1495–1517 (1979).

P. D. Spear, R. J. Moore, C. B. Y. Kim, J.-T. Xue, and N. Tumosa, “Effects of aging on the primate visual system: spatial and temporal processing by lateral geniculate neurons in young adult and old rhesus monkeys,” J. Neurophysiol. 72, 402–420 (1994).

S. D. Van Hooser, J. Alexander, F. Heimel, and S. B. Nelson, “Receptive field properties and laminar organization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinesis),” J. Neurophysiol. 90, 3398–3418 (2003).
[CrossRef]

P. D. Spear, D. C. Smith, and L. L. Williams, “Visual receptive-field properties of single neurons in cat’s ventral lateral geniculate nucleus,” J. Neurophysiol. 40, 390–409 (1977).

J. B. Levitt, R. A. Schumer, S. M. Sherman, P. D. Spear, and J. A. Movshon, “Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys,” J. Neurophysiol. 85, 2111–2129 (2001).

L. P. O’ Keefe, J. B. Levitt, D. C. Kiper, R. M. Shapley, and J. A. Movshon, “Functional organization of owl monkey lateral geniculate nucleus and visual cortex,” J. Neurophysiol. 80, 594–609 (1998).

H. Cheng, Y. M. Chino, E. L. Smith, J. Hamamoto, and K. Yoshida, “Transfer characteristics of lateral geniculate nucleus X neurons in the cat: effects of spatial frequency and contrast,” J. Neurophysiol. 74, 2548–2557 (1995).

M. S. Grubb and I. D. Thompson, “Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus,” J. Neurophysiol. 90, 3594–3607 (2003).
[CrossRef]

J. Neurosci.

T. R. Tucker and D. Fitzpatrick, “Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response,” J. Neurosci. 26, 13537–13547 (2006).
[CrossRef]

V. Bonin, V. Mante, and M. Carandini, “The suppressive field of neurons in lateral geniculate nucleus,” J. Neurosci. 25, 10844–10856 (2005).
[CrossRef]

J. Physiol.

D. H. Hubel, “Single unit activity in the lateral geniculate body and optic tract of unrestrained cats,” J. Physiol. 150, 91–104 (1960).

D. H. Hubel and T. N. Wiesel, “Integrative action in the cat’s lateral geniculate body,” J. Physiol. 155, 385–398 (1961).

A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).

E. Kaplan, K. Purpura, and R. M. Shapley, “Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus,” J. Physiol. 391, 267–288 (1987).

H. J. Alitto, B. D. Moore, D. L. Rathburn, and W. M. Ursey, “A comparison of visual responses in the lateral geniculate nucleus of alert and anaesthetized macaque monkeys,” J. Physiol. 589, 87–99 (2011).
[CrossRef]

C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).

A. J. R. White, S. G. Solomon, and P. R. Martin, “Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus,” J. Physiol. 533, 519–535 (2001).
[CrossRef]

J. Vis.

J. W. Peirce, “The potential importance of saturating and supersaturating contrast response functions in visual cortex,” J. Vis. 7(6):13, 1–10 (2007).
[CrossRef]

Nat. Neurosci.

V. Mante, R. A. Frazor, V. Bonin, W. S. Geisler, and M. Carandini, “Independence of luminance and contrast in natural scenes and in the early visual system,” Nat. Neurosci. 8, 1690–1697 (2005).
[CrossRef]

Nat. Rev. Neurosci.

M. Carandini and D. J. Heeger, “Normalization as a canonical neural computation,” Nat. Rev. Neurosci. 13, 51–62 (2012).
[CrossRef]

Neuron

V. Mante, V. Bonin, and M. Carandini, “Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli,” Neuron 58, 625–638 (2008).
[CrossRef]

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie, “Profound contrast adaptation early in the visual pathway,” Neuron 42, 155–162 (2004).
[CrossRef]

Vis. Neurosci.

T. Shou, X. Li, Y. Zhou, and B. Hu, “Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings,” Vis. Neurosci. 13, 605–613 (1996).
[CrossRef]

G. E. Irvin, V. A. Casagrande, and T. T. Norton, “Center/surround relationships of magnocellular, parvocellular, and koniocellular relay cells in primate lateral geniculate nucleus,” Vis. Neurosci. 10, 363–373 (1993).
[CrossRef]

X. Xu, A. B. Bonds, and V. A. Casagrande, “Modeling receptive-field structure of koniocellular, magnocellular, and parvocellular LGN cells in the owl monkey (Aotus trivigatus),” Vis. Neurosci. 19, 703–711 (2002).

Vis. Res.

R. W. Rodieck, “Quantitative analysis of cat retinal ganglion cell response to visual stimuli,” Vis. Res. 5, 583–601 (1965).
[CrossRef]

J. Kremers and S. Weiss, “Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus),” Vis. Res. 37, 2171–2181 (1997).
[CrossRef]

R. A. Frazor and W. S. Geisler, “Local luminance and contrast in natural images,” Vis. Res. 46, 1585–1598 (2006).
[CrossRef]

G. H. Jacobs and R. L. Yolton, “Center-surround balance in receptive fields of cells in the lateral geniculate nucleus,” Vis. Res. 10, 1127–1144 (1970).
[CrossRef]

R. T. Marrocco, “Maintained activity of monkey optic tract fibers and lateral geniculate nucleus cells,” Vis. Res. 12, 1175–1181 (1972).
[CrossRef]

R. B. Barlow and R. Verillo, “Brightness sensation in a ganzfeld,” Vis. Res. 16, 1291–1297 (1976).
[CrossRef]

Other

D. Cope, B. Blakeslee, and M. E. McCourt, “Modeling lateral geniculate nucleus response with contrast gain control. Part 2. Analysis,” J. Opt. Soc. Am. A (submitted).

V. Bonin, V. Mante, and M. Carandini, “Nonlinear processing in LGN neurons,” in Advances in Neural Information Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf, eds. (MIT, 2004), pp. 1443–1450.

D. G. Albrecht, W. S. Geisler, and A. M. Crane, “Nonlinear properties of visual cortex neurons: temporal dynamics, stimulus selectivity, neural performance,” in The Visual Neurosciences, L. M. Chalupa and J. S. Werner, eds. (MIT, 2003), Vol. 1, pp. 747–764.

J. G. Robson, “Neural images: the physiological basis of spatial vision,” in Visual Coding and Adaptability, C. S. Harris, ed. (Lawrence Erlbaum Associates, 1980), pp. 177–214.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross-sections of linear field functions R(x1,0) versus x1/ρ0 and gain control function 10G(x1,0) versus x1/ρ0, where ρ0 is the LGN excitatory center radius (Section 3). Parameter values: (1) σC2,σS2,βCS=0.1292ρ02,4.651ρ02,0.836 (strong band-pass); (2) σC2,σS2,βCS=0.1130ρ02,4.070ρ02,0.488 (moderate band-pass); (3) σC2,σS2,βCS=0.0798ρ02,2.873ρ02,0.081 (weak band-pass); (4) σC2,σS2, βCS=0.0646ρ02,2.326ρ02,0.019 (low-pass); and σG2=9.0ρ02 (gain control).

Fig. 2.
Fig. 2.

Sinusoidal grating linear field response maximum (R[P]/νG)max versus normalized spatial frequency log10(πρ0sP) for the strong band-pass case of Fig. 1 and levels SNR=1 (short dashed), SNR=2 (medium dashed), SNR=4 (long dashed), SNR=8 (solid), at maximum grating contrast, cP=1. The linear response is scaled by the SNR value; in particular, there is no change in the optimal spatial frequency πρ0sP=0.614 (vertical dashed line) as SNR varies.

Fig. 3.
Fig. 3.

Sinusoidal grating gain control response minimum (G[P]/νG)min versus normalized spatial frequency log10(πρ0sP) for gain control parameter σG2=9ρ02, contrast cP=1, and SNR=1,2,4,8, matching Fig. 2. The gain control response turns from “off” at low frequencies to “on” at higher frequencies. The plateau level is proportional to SNR but is essentially independent of σG2, which determines where the plateau begins. The vertical dashed line marks the linear response optimal spatial frequency πρ0sP=0.614 (Fig. 2).

Fig. 4.
Fig. 4.

Sinusoidal grating total response maximum (LGN[P]/νLGN)max versus normalized spatial frequency log10(πρ0sP) for the four linear responses of Fig. 2 (strong band-pass case of Fig. 1) at levels SNR=1 (short dashed), SNR=2 (medium dashed), SNR=4 (long dashed), and SNR=8 (solid). The vertical solid line is a nominal boundary where gain control becomes effective at higher frequencies. The vertical dashed line is the linear optimal spatial frequency πρ0sP=0.614. In all cases, gain control is fully effective at the optimal spatial frequency, which remains stable as SNR varies.

Fig. 5.
Fig. 5.

Sinusoidal grating total response maximum (LGN[P]/νLGN)max versus contrast cP for the strong band-pass case of Fig. 1 with spatial frequency at the optimal value (πρ0sP=0.614) and gain parameter σG2=9ρ02. The curves correspond to SNR=1,2,4,8 and the saturated response limit SNR=. Notice contrast saturation at SNR=4 and supersaturation at SNR=8. The model predicts supersaturation in the sinusoidal grating response as a general effect with increasing SNR.

Fig. 6.
Fig. 6.

Sinusoidal grating total response maximum (LGN[P]/νLGN)max for the strong band-pass case of Fig. 1 with gain parameter σG2=9ρ02 and SNR=4 versus contrast cP and normalized spatial frequency log10(πρ0sP). The contrast saturation curve in Fig. 5 is a cross-section of this plot at the vertical plane marking the optimal spatial frequency (πρ0sP=0.614). Notice the optimal frequency is independent of contrast.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

LGN[P]=νLGNPos(R[P]G[P]),
R[P]R×RR(y)P(y)dy.
R×RR(x)dx=1βCS.
G[P](R×RG(y)(P(y)μG[P]+νG)2dy)1/2,
μG[P]R×RG(y)P(y)dy.
R×RG(x)dx=1.
VarG[P]R×RG(y)(P(y)μG[P])2dy=R×RG(y)P(y)2dyμG[P]2,
G[P]=(VarG[P]+νG2)1/2.
P(x)=νMAGp(x),
R[P]=νMAGR[p],VarG[P]=νMAG2VarG[p],G[P]=νG(1+νMAG2νG2VarG[p])1/2.
LGN[P]νLGN=Pos(R[P]/νG)G[P]/νG,G[P]νG=(1+νMAG2νG2VarG[p])1/2.
limνMAGνGLGN[P]νLGN=limνMAGνGPos(νMAGνGR[p](1+νMAG2νG2VarG[p])1/2)=Pos(R[p]VarG[p]1/2)0
LGN[νP]νLGN=νPνG(1βCS).
R(x)12πσC2exp(x12+x222σC2)βCS2πσS2exp(x12+x222σS2).
G(x)12πσG2exp(x12+x222σG2).
0<σC<σSand0<βCS1.
P(x)=νP(1+cPcos(2πsP(d(αP)·x)ϕP)),
(LGN[P]νG)maxmaxϕP(LGN[P]νG),

Metrics