Abstract

We study the optical coupling between a gold nanowire and a silver ion-exchanged waveguide, with special emphasis on the nanowire antenna radiation pattern. We measure the radiation patterns of waveguide-coupled gold nanowires with a height of 70 nm and width of 50 or 150 nm in the 450–700 nm spectral range for TE and TM polarizations. We perform a systematic theoretical study on the wavelength, polarization, nanowire size, and material dependences on the properties of the radiation pattern. We also give some elements concerning absorption and near-field. Experiments and calculations show localized plasmon resonance for the polarization orthogonal to the wire (far-field resonance at 580 nm for the smallest wire and 670 nm for the widest). It is shown that a great variety of radiation patterns can be obtained, together with a high sensitivity to a change of one parameter, particularly near-resonance.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Vo-Dinh, “Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics,” in Proceedings of the 1st International Symposium on Micro & Nano Technology, Hawaii (2004), pp. 14–17.
  2. K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
    [CrossRef]
  3. C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
    [CrossRef]
  4. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
    [CrossRef]
  5. A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
    [CrossRef]
  6. M. Paulus and O. Martin, “How to tap an innocent waveguide,” Opt. Express 8, 644–648 (2001).
    [CrossRef]
  7. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17, 5925–5932 (2009).
    [CrossRef]
  8. J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007).
    [CrossRef]
  9. W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010).
    [CrossRef]
  10. E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  11. H. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt. 50, 2391–2400 (2011).
    [CrossRef]
  12. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
    [CrossRef]
  13. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
    [CrossRef]
  14. J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
    [CrossRef]
  15. K. Kim, S. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006).
    [CrossRef]
  16. MONA, “A European roadmap for photonics and nanotechnologies,” 2008, http://www.ist-mona.org/ .
  17. F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
    [CrossRef]
  18. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
    [CrossRef]
  19. L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]
  20. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000).
    [CrossRef]
  21. J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007).
    [CrossRef]
  22. A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
    [CrossRef]
  23. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  24. M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).
  25. E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.
  26. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007).
    [CrossRef]
  27. W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67, 1615–1619 (1977).
    [CrossRef]
  28. B. Ross and L. Lee, “Comparison of near-and far-field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009).
    [CrossRef]
  29. M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [CrossRef]
  30. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  31. H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
    [CrossRef]
  32. P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002).
    [CrossRef]

2011

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[CrossRef]

H. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Appl. Opt. 50, 2391–2400 (2011).
[CrossRef]

2010

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
[CrossRef]

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010).
[CrossRef]

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef]

2009

2008

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

2007

J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007).
[CrossRef]

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007).
[CrossRef]

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

2006

2005

H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

2003

M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

2002

P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002).
[CrossRef]

2001

2000

1997

L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

1995

1977

1972

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Akimov, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef]

Ayyub, P.

P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002).
[CrossRef]

Benech, P.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Beversluis, M.

M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Bian, R.

L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Blaize, S.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Bouhelier, A.

M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

Broquin, J.

J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007).
[CrossRef]

Bruyant, A.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

Bulu, I.

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

Capasso, F.

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Chandra, R.

P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002).
[CrossRef]

Chang, D.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Chelnokov, A.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Chu, H.

W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010).
[CrossRef]

Crozier, K.

E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Cryan, M.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Custillon, G.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

Degirmenci, F.

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

Delacour, C.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

Deotare, P.

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef]

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007).
[CrossRef]

Ewe, W.

W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010).
[CrossRef]

Fedeli, J.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Ferrand, J.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

Fritzsche, W.

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
[CrossRef]

Gaylord, T.

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Gonthiez, T.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

Grady, N.

H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

Grann, E.

Grosse, P.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

Halas, N.

H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

Hattori, H.

Hemmer, P.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Honkanen, S.

A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kern, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Khan, M.

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

Kim, D.

Kim, K.

Kort, E.

E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Kretschmer, R.

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
[CrossRef]

Kunz, R.

Lalanne, P.

Laroche, T.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007).
[CrossRef]

Le Coarer, E.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Leblond, G.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Lee, L.

Lerondel, G.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

Lérondel, G.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Li, E.

W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010).
[CrossRef]

Li, J.

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007).
[CrossRef]

Li, Z.

Liu, D.

Loncar, M.

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

Luk’yanchuk, B.

W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010).
[CrossRef]

Lukin, M.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Lukosz, W.

Martin, O.

Moharam, M.

Möller, R.

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
[CrossRef]

Morand, A.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Moulin, T.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

Mukherjee, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Neviere, M.

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

Novotny, L.

M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

O’Brien, J.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Park, H.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Paulus, M.

Peschel, U.

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Politi, A.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Pommet, D.

Popov, E.

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

Popp, J.

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
[CrossRef]

Quidant, R.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Rarity, J.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Righini, M.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Romanov, S.

Ross, B.

Royer, P.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Salas-Montiel, R.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

Silberstein, E.

Stefanon, I.

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Strelau, K.

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
[CrossRef]

Tam, F.

H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

Taneja, P.

P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002).
[CrossRef]

Tervonen, A.

A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[CrossRef]

Thomas, F.

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

Vial, A.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007).
[CrossRef]

Vo-Dinh, T.

T. Vo-Dinh, “Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics,” in Proceedings of the 1st International Symposium on Micro & Nano Technology, Hawaii (2004), pp. 14–17.

Volpe, G.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

Wang, H.

H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

Wen, J.

West, B.

A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[CrossRef]

Xie, X.

L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Yoon, S.

Yu, C.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Yu, S.

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Zibrov, A.

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Anal. Bioanal. Chem.

K. Strelau, R. Kretschmer, R. Möller, W. Fritzsche, and J. Popp, “SERS as tool for the analysis of DNA-chips in a microfluidic platform,” Anal. Bioanal. Chem. 396, 1381–1384 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. A

W. Ewe, H. Chu, E. Li, and B. Luk’yanchuk, “Field enhancement of gold optical nanoantennas mounted on a dielectric waveguide,” Appl. Phys. A 100, 315–319 (2010).
[CrossRef]

Appl. Phys. Lett.

E. Cubukcu, E. Kort, K. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

IEEE Trans. Antennas Propag.

J. Li and N. Engheta, “Core-shell nanowire optical antennas fed by slab waveguides,” IEEE Trans. Antennas Propag. 55, 3018–3026 (2007).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Phys. Chem. B

H. Wang, F. Tam, N. Grady, and N. Halas, “Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance,” J. Phys. Chem. B 109, 18218–18222 (2005).
[CrossRef]

J. Phys. D

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D 40, 7152 (2007).
[CrossRef]

Nano Lett.

C. Delacour, S. Blaize, P. Grosse, J. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, and A. Chelnokov, “Efficient directional coupling between silicon and copper plasmonic nanoslot waveguides: toward metal-oxide-silicon nanophotonics,” Nano Lett. 10, 2922–2926 (2010).
[CrossRef]

Nat. Photonics

E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J. Fedeli, and P. Royer, “Wavelength-scale stationary-wave integrated Fourier-transform spectrometry,” Nat. Photonics 1, 473–478 (2007).
[CrossRef]

Nature

A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, and M. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450, 402–406 (2007).
[CrossRef]

Opt. Eng.

A. Tervonen, B. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 071107 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. Taneja, P. Ayyub, and R. Chandra, “Size dependence of the optical spectrum in nanocrystalline silver,” Phys. Rev. B 65, 245412 (2002).
[CrossRef]

M. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
[CrossRef]

L. Novotny, R. Bian, and X. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
[CrossRef]

Proc. SPIE

J. Ferrand, G. Custillon, G. Leblond, F. Thomas, T. Moulin, E. Le Coarer, A. Morand, S. Blaize, T. Gonthiez, and P. Benech, “Stationary wave integrated Fourier transform spectrometer (swifts),” Proc. SPIE 7604, 760414 (2010).
[CrossRef]

J. Broquin, “Glass integrated optics: state of the art and position toward other technologies,” Proc. SPIE 6475, 647507 (2007).
[CrossRef]

F. Degirmenci, I. Bulu, P. Deotare, M. Khan, M. Loncar, and F. Capasso, “Waveguide integrated plasmonic platform for sensing and spectroscopy,” Proc. SPIE 7941, 794117 (2011).
[CrossRef]

Science

A. Politi, M. Cryan, J. Rarity, S. Yu, and J. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320, 646–649 (2008).
[CrossRef]

Other

T. Vo-Dinh, “Biosensors, nanosensors and biochips: frontiers in environmental and medical diagnostics,” in Proceedings of the 1st International Symposium on Micro & Nano Technology, Hawaii (2004), pp. 14–17.

MONA, “A European roadmap for photonics and nanotechnologies,” 2008, http://www.ist-mona.org/ .

M. Neviere and E. Popov, Light Propagation in Periodic Media: Differential Theory and Design (Marcel Dekker, 2003).

E. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998), Vol. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics