Abstract

Integral imaging is a promising technology for 3D imaging and display. This paper reports the 3D spatial-resolution research based on reconstructed 3D space. Through geometric analysis of the reconstructed optical distribution from all the element images that attend recording, the relationship among microlens parameters, planar-recording resolution, and 3D spatial resolution was obtained. The effect of microlens parameter accuracy on the reconstructed position error also was discussed. The research was carried on the depth priority integral imaging system (DPII). The results can be used in the optimal design of integral imaging.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt. 27, 4520–4528 (1988).
    [CrossRef]
  2. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [CrossRef]
  3. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [CrossRef]
  4. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
    [CrossRef]
  5. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
    [CrossRef]
  6. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
    [CrossRef]
  7. C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968).
    [CrossRef]
  8. T. Okoshi, “Optimum design and depth resolution of lens-sheet and projection-type three-dimensional displays,” Appl. Opt. 10, 2284–2291 (1971).
    [CrossRef]
  9. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15, 2059–2065 (1998).
    [CrossRef]
  10. J. Park, S. Min, S. Jung, and B. Lee, “Analysis of viewing parameter for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
    [CrossRef]
  11. S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).
    [CrossRef]
  12. F. Jin, J. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).
    [CrossRef]
  13. Z. Kavehvash, M. Martinez-Corral, K. Mehrany, S. Bagheri, G. Saavedra, and H. Navarro, “Three-dimensional resolvability in an integral imaging system,” J. Opt. Soc. Am. A 29, 525–530 (2012).
    [CrossRef]
  14. M. Cho and B. Javidi, “Optimization of 3D integral imaging system parameters,” J. Disp. Technol. 8, 357–360 (2012).
    [CrossRef]
  15. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A 20, 996–1004 (2003).
    [CrossRef]
  16. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13, 9175–9180 (2005).
    [CrossRef]

2013 (1)

2012 (2)

2011 (1)

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

2009 (1)

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

2006 (1)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

2001 (2)

1998 (2)

1988 (1)

1971 (1)

1968 (1)

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968).
[CrossRef]

Aggoun, A.

Arai, J.

Bagheri, S.

Burckhardt, C. B.

C. B. Burckhardt, “Optimum parameters and resolution limitation of integral photography,” J. Opt. Soc. Am. A 58, 71–76 (1968).
[CrossRef]

Cho, M.

M. Cho and B. Javidi, “Optimization of 3D integral imaging system parameters,” J. Disp. Technol. 8, 357–360 (2012).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Daneshpanah, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Davies, N.

Hoshino, H.

Isono, H.

Jang, J.

Javidi, B.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[CrossRef]

M. Cho and B. Javidi, “Optimization of 3D integral imaging system parameters,” J. Disp. Technol. 8, 357–360 (2012).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13, 9175–9180 (2005).
[CrossRef]

F. Jin, J. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).
[CrossRef]

Jin, F.

Jung, S.

Kavehvash, Z.

Kung, S. Y.

Lee, B.

Manolache, S.

Martinez-Corral, M.

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, “Formation of real, orthoscopic integral images by smart pixel mapping,” Opt. Express 13, 9175–9180 (2005).
[CrossRef]

McCormick, M.

Mehrany, K.

Min, S.

Moon, I.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Navarro, H.

Okano, F.

Okoshi, T.

Okui, M.

Park, J.

Saavedra, G.

Stern, A.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Xiao, X.

Yang, L.

Yuyama, I.

Appl. Opt. (5)

J. Disp. Technol. (1)

M. Cho and B. Javidi, “Optimization of 3D integral imaging system parameters,” J. Disp. Technol. 8, 357–360 (2012).
[CrossRef]

J. Opt. Soc. Am. A (5)

Opt. Express (1)

Opt. Lett. (1)

Proc. IEEE (3)

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Planar-recording distribution.

Fig. 2.
Fig. 2.

Reconstruction illustration.

Fig. 3.
Fig. 3.

Reconstructed optical distribution.

Fig. 4.
Fig. 4.

ERR (a) P, (b) P2, (c) P3.

Fig. 5.
Fig. 5.

ERR in the z direction (deltaD) with object point depth.

Fig. 6.
Fig. 6.

Replaying while disparity in adjacent EIs less than one pixel width.

Fig. 7.
Fig. 7.

PRR requirement for three typical microlenses (PPI).

Fig. 8.
Fig. 8.

Replaying with microlens mismatching (a) δ<δcritical and (b) δ=δcritical.

Fig. 9.
Fig. 9.

deltaD with the relative pitch deviation (δ/φ).

Tables (2)

Tables Icon

Table 1. Reconstruction Comparison for Different Object Position (unit: pixel)

Tables Icon

Table 2. Parameters of the Three Typical Microlenses

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

m=[D2f].
xk=kφ+kφfDzk=f.
djk=(jk)φfD.
z=Dkφ(xkφ+12φ).
z=Dkφ(xkφ12φ).
deltaD=zfarznear=4f·(1+2fD2f).
φn<φfDorn>Df.
PRR>25.4Dφf.
D=(φ+δ)fφf/Dδ.
deltaD=DD1=δ/φ(1+f/D)f/Dδ/φ.
δcritical=φfD.

Metrics