Z. W. Cui, Y. P. Han, and C. Y. Li, “Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique,” Waves Random Complex Media 22, 234–248 (2012).

[CrossRef]

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804 (2011).

[CrossRef]

F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28, 2200–2208 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, X. Ai, and W. J. Zhao, “A domain decomposition of the finite element–boundary integral method for scattering by multiple objects,” Electromagnetics 31, 469–482 (2011).

[CrossRef]

X. Q. Sheng and Z. Peng, “Analysis of scattering by large objects with off-diagonally anisotropic material using finite element-boundary integral-multilevel fast multipole algorithm,” IET Microw. Antennas Propag. 4, 492–500 (2010).

[CrossRef]

V. P. Tishkovets and K. Jockers, “Multiple scattering of light by densely packed random media of spherical particles: dense media vector radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 101, 54–72 (2006).

[CrossRef]

B. E. Barrowes, C. O. Ao, F. L. Teixeira, and J. A. Kong, “Sparse matrix/canonical grid method applied to 3-D dense medium simulations,” IEEE Trans. Antennas Propag. 51, 48–58 (2003).

[CrossRef]

J. Liu and J. M. Jin, “A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems,” IEEE Trans. Antennas Propag. 49, 1794–1806 (2001).

[CrossRef]

P. R. Siqueira and K. Sarabandi, “T-matrix determination of effective permittivity for three-dimensional dense random media,” IEEE Trans. Antennas Propag. 48, 317–327 (2000).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Trans. Antennas Propag. 46, 303–311 (1998).

[CrossRef]

C. H. Chart and L. Tsang, “A sparse-matrix canonical-grid method for scattering by many scatterers,” Microw. Opt. Technol. Lett. 8, 114–118 (1995).

[CrossRef]

C. C. Lu, W. C. Chew, and L. Tsang, “The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles,” Radio Sci. 30, 25–28 (1995).

[CrossRef]

W. C. Chew, J. H. Lin, and X. G. Yang, “An FFT T-matrix method for 3D microwave scattering solution from random discrete scatterers,” Microw. Opt. Technol. Lett. 9, 194–196 (1995).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).

[CrossRef]

V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

V. V. Varadan and V. K. Varadan, “Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatters,” Phys. Rev. D 21, 388–394 (1980).

[CrossRef]

K. Furutsu, “Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation,” Radio Sci. 10, 29–44 (1975).

[CrossRef]

M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951).

[CrossRef]

L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119 (1945).

[CrossRef]

Z. W. Cui, Y. P. Han, X. Ai, and W. J. Zhao, “A domain decomposition of the finite element–boundary integral method for scattering by multiple objects,” Electromagnetics 31, 469–482 (2011).

[CrossRef]

B. E. Barrowes, C. O. Ao, F. L. Teixeira, and J. A. Kong, “Sparse matrix/canonical grid method applied to 3-D dense medium simulations,” IEEE Trans. Antennas Propag. 51, 48–58 (2003).

[CrossRef]

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations (Wiley, 2001).

B. E. Barrowes, C. O. Ao, F. L. Teixeira, and J. A. Kong, “Sparse matrix/canonical grid method applied to 3-D dense medium simulations,” IEEE Trans. Antennas Propag. 51, 48–58 (2003).

[CrossRef]

V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983).

[CrossRef]

Y. F. Sun, C. H. Chan, R. Mittra, and L. Tsang, “Characteristic basis function method for solving large problem arising in dense medium scattering,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2003), pp. 1068–1071.

C. H. Chart and L. Tsang, “A sparse-matrix canonical-grid method for scattering by many scatterers,” Microw. Opt. Technol. Lett. 8, 114–118 (1995).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Trans. Antennas Propag. 46, 303–311 (1998).

[CrossRef]

C. C. Lu, W. C. Chew, and L. Tsang, “The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles,” Radio Sci. 30, 25–28 (1995).

[CrossRef]

W. C. Chew, J. H. Lin, and X. G. Yang, “An FFT T-matrix method for 3D microwave scattering solution from random discrete scatterers,” Microw. Opt. Technol. Lett. 9, 194–196 (1995).

[CrossRef]

Z. W. Cui, Y. P. Han, and C. Y. Li, “Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique,” Waves Random Complex Media 22, 234–248 (2012).

[CrossRef]

Z. W. Cui, Y. P. Han, X. Ai, and W. J. Zhao, “A domain decomposition of the finite element–boundary integral method for scattering by multiple objects,” Electromagnetics 31, 469–482 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28, 2200–2208 (2011).

[CrossRef]

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations (Wiley, 2001).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119 (1945).

[CrossRef]

K. Furutsu, “Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation,” Radio Sci. 10, 29–44 (1975).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

Z. W. Cui, Y. P. Han, and C. Y. Li, “Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique,” Waves Random Complex Media 22, 234–248 (2012).

[CrossRef]

Z. W. Cui, Y. P. Han, X. Ai, and W. J. Zhao, “A domain decomposition of the finite element–boundary integral method for scattering by multiple objects,” Electromagnetics 31, 469–482 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28, 2200–2208 (2011).

[CrossRef]

V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983).

[CrossRef]

J. Liu and J. M. Jin, “A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems,” IEEE Trans. Antennas Propag. 49, 1794–1806 (2001).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Trans. Antennas Propag. 46, 303–311 (1998).

[CrossRef]

J. M. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

V. P. Tishkovets and K. Jockers, “Multiple scattering of light by densely packed random media of spherical particles: dense media vector radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 101, 54–72 (2006).

[CrossRef]

B. E. Barrowes, C. O. Ao, F. L. Teixeira, and J. A. Kong, “Sparse matrix/canonical grid method applied to 3-D dense medium simulations,” IEEE Trans. Antennas Propag. 51, 48–58 (2003).

[CrossRef]

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations (Wiley, 2001).

M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951).

[CrossRef]

Z. W. Cui, Y. P. Han, and C. Y. Li, “Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique,” Waves Random Complex Media 22, 234–248 (2012).

[CrossRef]

W. C. Chew, J. H. Lin, and X. G. Yang, “An FFT T-matrix method for 3D microwave scattering solution from random discrete scatterers,” Microw. Opt. Technol. Lett. 9, 194–196 (1995).

[CrossRef]

J. Liu and J. M. Jin, “A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems,” IEEE Trans. Antennas Propag. 49, 1794–1806 (2001).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Trans. Antennas Propag. 46, 303–311 (1998).

[CrossRef]

C. C. Lu, W. C. Chew, and L. Tsang, “The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles,” Radio Sci. 30, 25–28 (1995).

[CrossRef]

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804 (2011).

[CrossRef]

M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, “Multiple scattering by random particulate media: exact 3D results,” Opt. Express 15, 2822–2836 (2007).

[CrossRef]

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804 (2011).

[CrossRef]

M. I. Mishchenko, L. Liu, D. W. Mackowski, B. Cairns, and G. Videen, “Multiple scattering by random particulate media: exact 3D results,” Opt. Express 15, 2822–2836 (2007).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).

[CrossRef]

Y. F. Sun, C. H. Chan, R. Mittra, and L. Tsang, “Characteristic basis function method for solving large problem arising in dense medium scattering,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2003), pp. 1068–1071.

X. Q. Sheng and Z. Peng, “Analysis of scattering by large objects with off-diagonally anisotropic material using finite element-boundary integral-multilevel fast multipole algorithm,” IET Microw. Antennas Propag. 4, 492–500 (2010).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

P. R. Siqueira and K. Sarabandi, “T-matrix determination of effective permittivity for three-dimensional dense random media,” IEEE Trans. Antennas Propag. 48, 317–327 (2000).

[CrossRef]

X. Q. Sheng and Z. Peng, “Analysis of scattering by large objects with off-diagonally anisotropic material using finite element-boundary integral-multilevel fast multipole algorithm,” IET Microw. Antennas Propag. 4, 492–500 (2010).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Trans. Antennas Propag. 46, 303–311 (1998).

[CrossRef]

P. R. Siqueira and K. Sarabandi, “T-matrix determination of effective permittivity for three-dimensional dense random media,” IEEE Trans. Antennas Propag. 48, 317–327 (2000).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Trans. Antennas Propag. 46, 303–311 (1998).

[CrossRef]

Y. F. Sun, C. H. Chan, R. Mittra, and L. Tsang, “Characteristic basis function method for solving large problem arising in dense medium scattering,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2003), pp. 1068–1071.

B. E. Barrowes, C. O. Ao, F. L. Teixeira, and J. A. Kong, “Sparse matrix/canonical grid method applied to 3-D dense medium simulations,” IEEE Trans. Antennas Propag. 51, 48–58 (2003).

[CrossRef]

V. P. Tishkovets and K. Jockers, “Multiple scattering of light by densely packed random media of spherical particles: dense media vector radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 101, 54–72 (2006).

[CrossRef]

C. C. Lu, W. C. Chew, and L. Tsang, “The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles,” Radio Sci. 30, 25–28 (1995).

[CrossRef]

C. H. Chart and L. Tsang, “A sparse-matrix canonical-grid method for scattering by many scatterers,” Microw. Opt. Technol. Lett. 8, 114–118 (1995).

[CrossRef]

Y. F. Sun, C. H. Chan, R. Mittra, and L. Tsang, “Characteristic basis function method for solving large problem arising in dense medium scattering,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2003), pp. 1068–1071.

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations (Wiley, 2001).

V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983).

[CrossRef]

V. V. Varadan and V. K. Varadan, “Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatters,” Phys. Rev. D 21, 388–394 (1980).

[CrossRef]

V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983).

[CrossRef]

V. V. Varadan and V. K. Varadan, “Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatters,” Phys. Rev. D 21, 388–394 (1980).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

W. C. Chew, J. H. Lin, and X. G. Yang, “An FFT T-matrix method for 3D microwave scattering solution from random discrete scatterers,” Microw. Opt. Technol. Lett. 9, 194–196 (1995).

[CrossRef]

Z. W. Cui, Y. P. Han, X. Ai, and W. J. Zhao, “A domain decomposition of the finite element–boundary integral method for scattering by multiple objects,” Electromagnetics 31, 469–482 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, X. Ai, and W. J. Zhao, “A domain decomposition of the finite element–boundary integral method for scattering by multiple objects,” Electromagnetics 31, 469–482 (2011).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

X. Q. Sheng, J. M. Jin, J. M. Song, C. C. Lu, and W. C. Chew, “On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering,” IEEE Trans. Antennas Propag. 46, 303–311 (1998).

[CrossRef]

J. Liu and J. M. Jin, “A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems,” IEEE Trans. Antennas Propag. 49, 1794–1806 (2001).

[CrossRef]

P. R. Siqueira and K. Sarabandi, “T-matrix determination of effective permittivity for three-dimensional dense random media,” IEEE Trans. Antennas Propag. 48, 317–327 (2000).

[CrossRef]

B. E. Barrowes, C. O. Ao, F. L. Teixeira, and J. A. Kong, “Sparse matrix/canonical grid method applied to 3-D dense medium simulations,” IEEE Trans. Antennas Propag. 51, 48–58 (2003).

[CrossRef]

X. Q. Sheng and Z. Peng, “Analysis of scattering by large objects with off-diagonally anisotropic material using finite element-boundary integral-multilevel fast multipole algorithm,” IET Microw. Antennas Propag. 4, 492–500 (2010).

[CrossRef]

V. P. Tishkovets and K. Jockers, “Multiple scattering of light by densely packed random media of spherical particles: dense media vector radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transfer 101, 54–72 (2006).

[CrossRef]

W. C. Chew, J. H. Lin, and X. G. Yang, “An FFT T-matrix method for 3D microwave scattering solution from random discrete scatterers,” Microw. Opt. Technol. Lett. 9, 194–196 (1995).

[CrossRef]

C. H. Chart and L. Tsang, “A sparse-matrix canonical-grid method for scattering by many scatterers,” Microw. Opt. Technol. Lett. 8, 114–118 (1995).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).

[CrossRef]

L. L. Foldy, “The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers,” Phys. Rev. 67, 107–119 (1945).

[CrossRef]

D. W. Mackowski and M. I. Mishchenko, “Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams,” Phys. Rev. A 83, 013804 (2011).

[CrossRef]

V. V. Varadan and V. K. Varadan, “Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatters,” Phys. Rev. D 21, 388–394 (1980).

[CrossRef]

V. K. Varadan, V. N. Bringi, V. V. Varadan, and A. Ishimaru, “Multiple scattering theory for waves in discrete random media and comparison with experiments,” Radio Sci. 18, 321–327 (1983).

[CrossRef]

K. Furutsu, “Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation,” Radio Sci. 10, 29–44 (1975).

[CrossRef]

C. C. Lu, W. C. Chew, and L. Tsang, “The application of recursive aggregate T-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles,” Radio Sci. 30, 25–28 (1995).

[CrossRef]

M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951).

[CrossRef]

Z. W. Cui, Y. P. Han, and C. Y. Li, “Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique,” Waves Random Complex Media 22, 234–248 (2012).

[CrossRef]

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Numerical Simulations (Wiley, 2001).

J. M. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

Y. F. Sun, C. H. Chan, R. Mittra, and L. Tsang, “Characteristic basis function method for solving large problem arising in dense medium scattering,” in IEEE Antennas and Propagation Society International Symposium (IEEE, 2003), pp. 1068–1071.