Abstract

We report on the performance of target irradiation at the SG-II high-power laser facility with a continuous phase plate (CPP) and the technique of smoothing by spectral dispersion (SSD). Simulative and experimental results are presented, where the irradiation uniformity and energy concentration of the target spots are analyzed. The results show that the designed CPP can focus the spot energy into the desired region and shape a profile with steep edge and flat top, but the actual performance of the fabricated CPP needs some improvements. It is also proved that the CPP is insensitive to the long-scale wavefront distortion in the incident beam. The one-dimensional SSD configuration evidently works in smoothing the fine-scale intensity modulation inside the target spot.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986).
    [CrossRef]
  2. N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
    [CrossRef]
  3. W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
    [CrossRef]
  4. X. Jiang, J. Li, H. Li, Y. Li, and Z. Lin, “Uniform irradiation of adjustable target spots in high-power laser driver,” Appl. Opt. 50, 5213–5220 (2011).
    [CrossRef]
  5. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
    [CrossRef]
  6. S. N. Dixit, J. K. Lawson, K. R. Manes, H. T. Powell, and K. A. Nugent, “Kinoform phase plates for focal plane irradiance profile control,” Opt. Lett. 19, 417–419 (1994).
  7. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Distributed phase plates for super-Gaussian focal-plane irradiance profiles,” Opt. Lett. 20, 764–766 (1995).
    [CrossRef]
  8. Y. Lin, T. J. Kessler, and G. N. Lawrence, “Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,” Opt. Lett. 21, 1703–1705 (1996).
    [CrossRef]
  9. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
    [CrossRef]
  10. J. Néauport, X. Ribeyre, J. Daurios, D. Valla, M. Lavergne, V. Beau, and L. Videau, “Design and optical characterization of a large continuous phase plate for Laser Integration Line and Laser Megajoule facilities,” Appl. Opt. 42, 2377–2382 (2003).
    [CrossRef]
  11. C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008).
    [CrossRef]
  12. S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
    [CrossRef]
  13. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–249 (1972).
  14. M. A. Schofield and Y. M. Zhu, “Fast phase unwrapping algorithm for interferometric applications,” Opt. Lett. 28, 1194–1196 (2003).
    [CrossRef]
  15. J. A. Marozas, “Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility,” J. Opt. Soc. Am. A 24, 74–83 (2007).
    [CrossRef]
  16. W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
    [CrossRef]
  17. J. Menapace, P. Davis, W. Steele, M. Hachkowski, A. Nelson, and K. Xin, “MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers,” Proc. SPIE 6403, 64030N (2007).
    [CrossRef]
  18. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  19. S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
    [CrossRef]
  20. X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109 (2007).
    [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill, 1968).
  22. A. E. Siegman, Lasers (University Science Books, 1986).
  23. S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, “Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B 22, 998–1002 (2005).
    [CrossRef]
  24. X. Jiang and J. Li, “An evaluation of target irradiation uniformity based on spatial-spectrum analysis,” Optik 123, 1411–1414 (2012).
    [CrossRef]

2012 (1)

X. Jiang and J. Li, “An evaluation of target irradiation uniformity based on spatial-spectrum analysis,” Optik 123, 1411–1414 (2012).
[CrossRef]

2011 (1)

2009 (2)

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

2008 (1)

2007 (4)

2005 (1)

2003 (2)

2000 (1)

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

1999 (1)

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

1998 (1)

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

1986 (1)

1984 (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–249 (1972).

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Auerbach, J. M.

Beau, V.

Bowers, M. W.

Chen, Z.

Cheng, W.

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

Craxton, R. S.

S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, “Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B 22, 998–1002 (2005).
[CrossRef]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Daurios, J.

Davis, P.

J. Menapace, P. Davis, W. Steele, M. Hachkowski, A. Nelson, and K. Xin, “MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers,” Proc. SPIE 6403, 64030N (2007).
[CrossRef]

Deng, X.

Dixit, S. N.

Donaldson, W. R.

Dong, J.

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

Dumas, P.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
[CrossRef]

Erbert, G. V.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–249 (1972).

Golini, D.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill, 1968).

Hachkowski, M.

J. Menapace, P. Davis, W. Steele, M. Hachkowski, A. Nelson, and K. Xin, “MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers,” Proc. SPIE 6403, 64030N (2007).
[CrossRef]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Hogan, S.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
[CrossRef]

Jaanimagi, P. A.

Jacobs, S.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
[CrossRef]

Jacobs-Perkins, D.

Jancaitis, K. S.

Jiang, X.

X. Jiang and J. Li, “An evaluation of target irradiation uniformity based on spatial-spectrum analysis,” Optik 123, 1411–1414 (2012).
[CrossRef]

X. Jiang, J. Li, H. Li, Y. Li, and Z. Lin, “Uniform irradiation of adjustable target spots in high-power laser driver,” Appl. Opt. 50, 5213–5220 (2011).
[CrossRef]

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109 (2007).
[CrossRef]

Jitsuno, T.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Keck, R. L.

Kelly, J. H.

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Kessler, T. J.

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Kordonski, W.

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
[CrossRef]

Lavergne, M.

Lawrence, G. N.

Lawson, J. K.

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Li, H.

Li, J.

X. Jiang and J. Li, “An evaluation of target irradiation uniformity based on spatial-spectrum analysis,” Optik 123, 1411–1414 (2012).
[CrossRef]

X. Jiang, J. Li, H. Li, Y. Li, and Z. Lin, “Uniform irradiation of adjustable target spots in high-power laser driver,” Appl. Opt. 50, 5213–5220 (2011).
[CrossRef]

Li, P.

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

Li, Y.

Liang, X.

Lin, Y.

Lin, Z.

X. Jiang, J. Li, H. Li, Y. Li, and Z. Lin, “Uniform irradiation of adjustable target spots in high-power laser driver,” Appl. Opt. 50, 5213–5220 (2011).
[CrossRef]

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109 (2007).
[CrossRef]

Ma, P.

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008).
[CrossRef]

Ma, R.

Manes, K. R.

Marozas, J. A.

Marshall, C. D.

Matsuoka, S.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Mehta, N. C.

Menapace, J.

Meyerhofer, D. D.

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Miyanaga, N.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Moses, E.

Murray, J. R.

Nakatsuka, M.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Néauport, J.

Nelson, A.

J. Menapace, P. Davis, W. Steele, M. Hachkowski, A. Nelson, and K. Xin, “MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers,” Proc. SPIE 6403, 64030N (2007).
[CrossRef]

Nishi, N.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Nostrand, M. C.

Nugent, K. A.

Orth, C. D.

Patterson, R.

Powell, H. T.

Regan, S. P.

Ribeyre, X.

Sacks, R. A.

Sangster, T. C.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–249 (1972).

Schofield, M. A.

Seka, W.

Shaw, M. J.

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Skupsky, S.

S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, “Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,” J. Opt. Soc. Am. B 22, 998–1002 (2005).
[CrossRef]

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Smalyuk, V. A.

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Spaeth, M.

Steele, W.

J. Menapace, P. Davis, W. Steele, M. Hachkowski, A. Nelson, and K. Xin, “MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers,” Proc. SPIE 6403, 64030N (2007).
[CrossRef]

Su, J.

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

Sutton, S. B.

Tsubakimoto, K.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Valla, D.

Van Wonterghem, B. M.

Videau, L.

Wegner, P. J.

Wen, S.

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

White, R. K.

Widmayer, C. C.

Williams, W. H.

Xin, K.

J. Menapace, P. Davis, W. Steele, M. Hachkowski, A. Nelson, and K. Xin, “MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers,” Proc. SPIE 6403, 64030N (2007).
[CrossRef]

Xu, Q.

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008).
[CrossRef]

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Yan, H.

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

Yang, C.

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

C. Yang, R. Zhang, Q. Xu, and P. Ma, “Continuous phase plate for laser beam smoothing,” Appl. Opt. 47, 1465–1469 (2008).
[CrossRef]

Yang, S. T.

Yu, W.

Zhang, R.

Zhang, X.

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

Zhao, S.

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

Zhou, L.

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

Zhou, S.

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109 (2007).
[CrossRef]

Zhu, Y. M.

Zuegel, J. D.

Acta Opt. Sin. (1)

S. Wen, Q. Xu, P. Ma, C. Yang, L. Zhou, and H. Yan, “Process-based design of continuous phase plates,” Acta Opt. Sin. 29, 3179–3182 (2009).
[CrossRef]

Appl. Opt. (5)

J. Appl. Phys. (2)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

X. Jiang, S. Zhou, and Z. Lin, “Improved uniformity of target illumination by combining a lens array and the technique of spectral dispersion,” J. Appl. Phys. 101, 023109 (2007).
[CrossRef]

J. Opt. A (1)

W. Cheng, X. Zhang, J. Su, S. Zhao, P. Li, J. Dong, and L. Zhou, “Improved uniform irradiation by combining periodic chirped pulse, sinusoidal phase modulation light and lens array,” J. Opt. A 11, 15709–15714 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Opt. Rev. (1)

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, “Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of ICF target,” Opt. Rev. 7, 216–220 (2000).
[CrossRef]

Optik (2)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik 35, 237–249 (1972).

X. Jiang and J. Li, “An evaluation of target irradiation uniformity based on spatial-spectrum analysis,” Optik 123, 1411–1414 (2012).
[CrossRef]

Phys. Plasmas (1)

S. Skupsky and R. S. Craxton, “Irradiation uniformity for high-compression laser-fusion experiments,” Phys. Plasmas 6, 2157–2163 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Proc. SPIE (2)

W. Kordonski, D. Golini, P. Dumas, S. Hogan, and S. Jacobs, “Magnetorheological suspension-based finishing technology,” Proc. SPIE 3326, 527–535 (1998).
[CrossRef]

J. Menapace, P. Davis, W. Steele, M. Hachkowski, A. Nelson, and K. Xin, “MRF applications: on the road to making large-aperture ultraviolet laser resistant continuous phase plates for high-power lasers,” Proc. SPIE 6403, 64030N (2007).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics, 1st ed. (McGraw-Hill, 1968).

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Design model of CPP.

Fig. 2.
Fig. 2.

Experimental configuration of SSD and CPP in the SG-II facility.

Fig. 3.
Fig. 3.

(a) Design phase distribution of the CPP. The size of the CPP is 330mm×330mm, and the peak–valley phase variation is 51.17 rad. (b) The real wavefront of the ninth beam in SG-II.

Fig. 4.
Fig. 4.

Simulative two-dimensional intensity distribution of the target spot and the distributions across the spot center in x and y directions. The intensity is normalized to its peak in the whole spot. (a) Without SSD or CPP, and with the measured real wavefront. (b) With CPP and the ideal wavefront.

Fig. 5.
Fig. 5.

Simulative two-dimensional intensity distribution of the target spot and the distributions across the spot center in x and y directions. The intensity is normalized to its peak in the whole spot. (a) With CPP and the measured real wavefront. (b) With CPP, 1D SSD, and the measured real wavefront.

Fig. 6.
Fig. 6.

Experimental two-dimensional intensity distribution of the target spot and the distributions across the spot center in x and y directions. The intensity is normalized to its peak in the whole spot. (a) With CPP. (b) With CPP and 1D SSD.

Fig. 7.
Fig. 7.

Spatial power spectra of the target spots.

Fig. 8.
Fig. 8.

(a) Nonuniformity σ versus the cutoff spatial wavelength λSN0. (b) The encircled energy fractional functions of the spots.

Fig. 9.
Fig. 9.

Comparison of the spatial power spectra when the incident beam has a distorted real wavefront and when it has an ideal plane wavefront. (a) With CPP only. (b) With CPP and 1D SSD.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(x,y,t)=E0(x,y,t)exp[iω0t+iδsin(ωmt+αx)],
E(x,y,t)=E0(x,y,t)exp[i3ω0t+i3δsin(ωmt+αx)],
T1(x,y)=exp[iϕ(x,y)],
T2(x,y)=P(x,y)exp[ika2fa(x2+y2)],
E(x,y,t)=E(x,y,t)T1(x,y)T2(x,y).
σ(k0)=[k>k0P(k)dkkk0P(k)dk]1/2,

Metrics