Abstract

Balancing of Zernike aberrations breaks down if the defocus term is large enough that the condition (z/λ)2/[π(NA)4] is not satisfied. A modified Zernike aberration expansion, based on the Zernike aberrations, is developed that accurately includes axial displacement as a low-order term, even for large displacements. This expansion can be used to analyze aberrations for on-axis illumination of a high numerical aperture system. But more importantly, for systems of moderate numerical aperture it allows balanced aberration coefficients to be determined independent of the assumption of a particular reference point. The approach is applied to the case of a tilted dielectric plate. An exact expression is given for the wave front aberration, valid for both large angles of tilt and high beam convergence angles, that is independent of observation distance. Analytical expressions for the third- and fifth-order aberration coefficients are derived. Expressions are given for expansion of multiple-angle power series terms into Zernike polynomials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription