Abstract

To observe the solar corona, stray light in the coronagraph, arising primarily from an external occulter and diaphragm illuminated directly by the Sun, should be strongly suppressed. A toothed occulter and diaphragm can be used to suppress stray light because they diffract much less light in the central area than a circular disk. This study develops a method of computing the light diffracted by a toothed occulter and diaphragm, obtaining the optimum shape using this method. To prove the method’s feasibility, the diffracted fields of circular and rectangular disks are computed and compared with those calculated by a conventional method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Tousey, “Observations of the white light corona by rocket,” Ann. Astrophys. 28, 600–604 (1965).
  2. R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
    [CrossRef]
  3. R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
    [CrossRef]
  4. G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
    [CrossRef]
  5. R. A. Howard, J. D. Moses, and D. G. Socker, “Sun Earth connection coronal and heliospheric investigation (SECCHI),” Proc. SPIE 4139, 259–283 (2000).
    [CrossRef]
  6. H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).
  7. J. W. Evans, “A photometer for the measurement of sky brightness near the Sun,” J. Opt. Soc. Am. 38, 1083–1085 (1948).
    [CrossRef]
  8. G. Newkirk and D. Bohlin, “Reduction of scattered light in the coronagraph,” Appl. Opt. 2, 131–140 (1963).
    [CrossRef]
  9. M. Bout, P. Lamy, A. Maucherat, C. Colin, and A. Llebaria, “Experimental study of external occulters for the large angle and spectrometric coronagraph 2: LASCO-C2,” Appl. Opt. 39, 3955–3962 (2000).
    [CrossRef]
  10. B. Fort, C. Morel, and G. Spaak, “The reduction of scattered light in an external occulting disk coronagraph,” Astron. Astrophys. 63, 243–246 (1978).
  11. R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Spiderweb masks for high-contrast imaging,” Astrophys. J. 590, 593–603 (2003).
    [CrossRef]
  12. R. J. Vanderbei, E. J. Cady, and N. J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J. 665, 794–798 (2007).
    [CrossRef]
  13. A. V. Lensky, “Theoretical assessment of efficiency of coronagraph external occulting systems,” Sov. Astron. 25(3), 366–372 or Astron. Zhurn. 58, 648–659 (1981) (in Russian).
  14. E. Verroi, F. Frassetto, and G. Naletto, “Diffraction effects in a giant saw-toothed edge externally occulted solar coronagraph,” Proc. SPIE 7010, 70103Q (2008).
    [CrossRef]
  15. E. Verroi, F. Frassetto, and G. Naletto, “Analysis of diffraction from the occulter edges of a giant externally occulted solar coronagraph,” J. Opt. Soc. Am. A 25, 182–189 (2008).
    [CrossRef]
  16. F. Landini, M. Romoli, R. C. Colaninno, and A. Thernisien, “Comparison of different algorithms and programming languages in the diffraction calculation for a coronagraph stray-light analysis,” Proc. SPIE 5901, 59010O (2005).
    [CrossRef]
  17. F. Landini, M. Romoli, S. Fineschi, and E. Antonucci, “Stray-light analysis for the SCORE coronagraphs of HERSCHEL,” Appl. Opt. 45, 6657–6667 (2006).
    [CrossRef]
  18. P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
    [CrossRef]
  19. R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express 15, 15935–15951 (2007).
    [CrossRef]
  20. E. Cady, “Boundary diffraction wave integrals for diffraction modeling of external occulters,” Opt. Express 20, 15196–15208 (2012).
    [CrossRef]
  21. E. Hecht, Optics, 4th ed. (Adelphi University, 2002), p. 498.
  22. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2001), p. 478.

2012 (1)

2009 (2)

H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).

P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
[CrossRef]

2008 (2)

E. Verroi, F. Frassetto, and G. Naletto, “Diffraction effects in a giant saw-toothed edge externally occulted solar coronagraph,” Proc. SPIE 7010, 70103Q (2008).
[CrossRef]

E. Verroi, F. Frassetto, and G. Naletto, “Analysis of diffraction from the occulter edges of a giant externally occulted solar coronagraph,” J. Opt. Soc. Am. A 25, 182–189 (2008).
[CrossRef]

2007 (2)

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express 15, 15935–15951 (2007).
[CrossRef]

R. J. Vanderbei, E. J. Cady, and N. J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J. 665, 794–798 (2007).
[CrossRef]

2006 (1)

2005 (1)

F. Landini, M. Romoli, R. C. Colaninno, and A. Thernisien, “Comparison of different algorithms and programming languages in the diffraction calculation for a coronagraph stray-light analysis,” Proc. SPIE 5901, 59010O (2005).
[CrossRef]

2003 (1)

R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Spiderweb masks for high-contrast imaging,” Astrophys. J. 590, 593–603 (2003).
[CrossRef]

2000 (2)

R. A. Howard, J. D. Moses, and D. G. Socker, “Sun Earth connection coronal and heliospheric investigation (SECCHI),” Proc. SPIE 4139, 259–283 (2000).
[CrossRef]

M. Bout, P. Lamy, A. Maucherat, C. Colin, and A. Llebaria, “Experimental study of external occulters for the large angle and spectrometric coronagraph 2: LASCO-C2,” Appl. Opt. 39, 3955–3962 (2000).
[CrossRef]

1995 (1)

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

1981 (1)

A. V. Lensky, “Theoretical assessment of efficiency of coronagraph external occulting systems,” Sov. Astron. 25(3), 366–372 or Astron. Zhurn. 58, 648–659 (1981) (in Russian).

1980 (1)

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

1978 (1)

B. Fort, C. Morel, and G. Spaak, “The reduction of scattered light in an external occulting disk coronagraph,” Astron. Astrophys. 63, 243–246 (1978).

1974 (1)

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

1965 (1)

R. Tousey, “Observations of the white light corona by rocket,” Ann. Astrophys. 28, 600–604 (1965).

1963 (1)

1948 (1)

Antonucci, E.

Bedford, D. K.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Bohlin, D.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2001), p. 478.

Bout, M.

Bout, M.-V.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Brueckner, G. E.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Cady, E.

E. Cady, “Boundary diffraction wave integrals for diffraction modeling of external occulters,” Opt. Express 20, 15196–15208 (2012).
[CrossRef]

P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
[CrossRef]

Cady, E. J.

R. J. Vanderbei, E. J. Cady, and N. J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J. 665, 794–798 (2007).
[CrossRef]

Colaninno, R. C.

F. Landini, M. Romoli, R. C. Colaninno, and A. Thernisien, “Comparison of different algorithms and programming languages in the diffraction calculation for a coronagraph stray-light analysis,” Proc. SPIE 5901, 59010O (2005).
[CrossRef]

Colin, C.

Csoeke-Poeckh, A.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

Dere, K. P.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Dumont, P.

P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
[CrossRef]

Evans, J. W.

Eyles, D. J.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Fineschi, S.

Fort, B.

B. Fort, C. Morel, and G. Spaak, “The reduction of scattered light in an external occulting disk coronagraph,” Astron. Astrophys. 63, 243–246 (1978).

Frassetto, F.

E. Verroi, F. Frassetto, and G. Naletto, “Diffraction effects in a giant saw-toothed edge externally occulted solar coronagraph,” Proc. SPIE 7010, 70103Q (2008).
[CrossRef]

E. Verroi, F. Frassetto, and G. Naletto, “Analysis of diffraction from the occulter edges of a giant externally occulted solar coronagraph,” J. Opt. Soc. Am. A 25, 182–189 (2008).
[CrossRef]

Gosling, J. T.

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Adelphi University, 2002), p. 498.

Hildner, E.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

House, L.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

Howard, R. A.

R. A. Howard, J. D. Moses, and D. G. Socker, “Sun Earth connection coronal and heliospheric investigation (SECCHI),” Proc. SPIE 4139, 259–283 (2000).
[CrossRef]

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Kasdin, J.

P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
[CrossRef]

Kasdin, N. J.

R. J. Vanderbei, E. J. Cady, and N. J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J. 665, 794–798 (2007).
[CrossRef]

R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Spiderweb masks for high-contrast imaging,” Astrophys. J. 590, 593–603 (2003).
[CrossRef]

Koomen, M. J.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Korendyke, C. M.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Lamy, P.

Lamy, P. L.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Landini, F.

F. Landini, M. Romoli, S. Fineschi, and E. Antonucci, “Stray-light analysis for the SCORE coronagraphs of HERSCHEL,” Appl. Opt. 45, 6657–6667 (2006).
[CrossRef]

F. Landini, M. Romoli, R. C. Colaninno, and A. Thernisien, “Comparison of different algorithms and programming languages in the diffraction calculation for a coronagraph stray-light analysis,” Proc. SPIE 5901, 59010O (2005).
[CrossRef]

Lensky, A. V.

A. V. Lensky, “Theoretical assessment of efficiency of coronagraph external occulting systems,” Sov. Astron. 25(3), 366–372 or Astron. Zhurn. 58, 648–659 (1981) (in Russian).

Li, P.

H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).

Liu, H.

H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).

Llebaria, A.

M. Bout, P. Lamy, A. Maucherat, C. Colin, and A. Llebaria, “Experimental study of external occulters for the large angle and spectrometric coronagraph 2: LASCO-C2,” Appl. Opt. 39, 3955–3962 (2000).
[CrossRef]

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Lu, Z. W.

H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).

MacQueen, R. M.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

Maucherat, A.

Michels, D. J.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Morel, C.

B. Fort, C. Morel, and G. Spaak, “The reduction of scattered light in an external occulting disk coronagraph,” Astron. Astrophys. 63, 243–246 (1978).

Moses, J. D.

R. A. Howard, J. D. Moses, and D. G. Socker, “Sun Earth connection coronal and heliospheric investigation (SECCHI),” Proc. SPIE 4139, 259–283 (2000).
[CrossRef]

Munro, R. H.

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

Naletto, G.

E. Verroi, F. Frassetto, and G. Naletto, “Diffraction effects in a giant saw-toothed edge externally occulted solar coronagraph,” Proc. SPIE 7010, 70103Q (2008).
[CrossRef]

E. Verroi, F. Frassetto, and G. Naletto, “Analysis of diffraction from the occulter edges of a giant externally occulted solar coronagraph,” J. Opt. Soc. Am. A 25, 182–189 (2008).
[CrossRef]

Newkirk, G.

Poland, A. I.

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

Pueyo, L.

Reynolds, K.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

Romoli, M.

F. Landini, M. Romoli, S. Fineschi, and E. Antonucci, “Stray-light analysis for the SCORE coronagraphs of HERSCHEL,” Appl. Opt. 45, 6657–6667 (2006).
[CrossRef]

F. Landini, M. Romoli, R. C. Colaninno, and A. Thernisien, “Comparison of different algorithms and programming languages in the diffraction calculation for a coronagraph stray-light analysis,” Proc. SPIE 5901, 59010O (2005).
[CrossRef]

Ross, C. L.

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

Schwenn, R.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Shaklan, S.

P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
[CrossRef]

Simnett, G. M.

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Sivaramakrishnan, A.

Socker, D. G.

R. A. Howard, J. D. Moses, and D. G. Socker, “Sun Earth connection coronal and heliospheric investigation (SECCHI),” Proc. SPIE 4139, 259–283 (2000).
[CrossRef]

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Soummer, R.

Spaak, G.

B. Fort, C. Morel, and G. Spaak, “The reduction of scattered light in an external occulting disk coronagraph,” Astron. Astrophys. 63, 243–246 (1978).

Spergel, D. N.

R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Spiderweb masks for high-contrast imaging,” Astrophys. J. 590, 593–603 (2003).
[CrossRef]

Stanger, A.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

Tepoel, H.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

Thernisien, A.

F. Landini, M. Romoli, R. C. Colaninno, and A. Thernisien, “Comparison of different algorithms and programming languages in the diffraction calculation for a coronagraph stray-light analysis,” Proc. SPIE 5901, 59010O (2005).
[CrossRef]

Tousey, R.

R. Tousey, “Observations of the white light corona by rocket,” Ann. Astrophys. 28, 600–604 (1965).

Vanderbei, R.

P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
[CrossRef]

Vanderbei, R. J.

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express 15, 15935–15951 (2007).
[CrossRef]

R. J. Vanderbei, E. J. Cady, and N. J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J. 665, 794–798 (2007).
[CrossRef]

R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Spiderweb masks for high-contrast imaging,” Astrophys. J. 590, 593–603 (2003).
[CrossRef]

Verroi, E.

E. Verroi, F. Frassetto, and G. Naletto, “Analysis of diffraction from the occulter edges of a giant externally occulted solar coronagraph,” J. Opt. Soc. Am. A 25, 182–189 (2008).
[CrossRef]

E. Verroi, F. Frassetto, and G. Naletto, “Diffraction effects in a giant saw-toothed edge externally occulted solar coronagraph,” Proc. SPIE 7010, 70103Q (2008).
[CrossRef]

Wagner, W.

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2001), p. 478.

Xia, L. D.

H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).

Zhang, H. X.

H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).

Ann. Astrophys. (1)

R. Tousey, “Observations of the white light corona by rocket,” Ann. Astrophys. 28, 600–604 (1965).

Appl. Opt. (3)

Astron. Astrophys. (1)

B. Fort, C. Morel, and G. Spaak, “The reduction of scattered light in an external occulting disk coronagraph,” Astron. Astrophys. 63, 243–246 (1978).

Astrophys. J. (2)

R. J. Vanderbei, D. N. Spergel, and N. J. Kasdin, “Spiderweb masks for high-contrast imaging,” Astrophys. J. 590, 593–603 (2003).
[CrossRef]

R. J. Vanderbei, E. J. Cady, and N. J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J. 665, 794–798 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Precision Eng. (1)

H. X. Zhang, Z. W. Lu, L. D. Xia, H. Liu, and P. Li, “Stray light suppressing of optical system in white light coronagraph [J],” Opt. Precision Eng. 17, 2371–2376 (2009) (in Chinese).

Proc. SPIE (5)

R. A. Howard, J. D. Moses, and D. G. Socker, “Sun Earth connection coronal and heliospheric investigation (SECCHI),” Proc. SPIE 4139, 259–283 (2000).
[CrossRef]

E. Verroi, F. Frassetto, and G. Naletto, “Diffraction effects in a giant saw-toothed edge externally occulted solar coronagraph,” Proc. SPIE 7010, 70103Q (2008).
[CrossRef]

F. Landini, M. Romoli, R. C. Colaninno, and A. Thernisien, “Comparison of different algorithms and programming languages in the diffraction calculation for a coronagraph stray-light analysis,” Proc. SPIE 5901, 59010O (2005).
[CrossRef]

P. Dumont, S. Shaklan, E. Cady, J. Kasdin, and R. Vanderbei, “Analysis of external occulters in the presence of defects,” Proc. SPIE 7440, 744008 (2009).
[CrossRef]

R. M. MacQueen, J. T. Gosling, E. Hildner, R. H. Munro, A. I. Poland, and C. L. Ross, “The high altitude observatory white light coronagraph,” Proc. SPIE 44, 207–212 (1974).
[CrossRef]

Sol. Phys. (2)

R. M. MacQueen, A. Csoeke-Poeckh, E. Hildner, L. House, K. Reynolds, A. Stanger, H. Tepoel, and W. Wagner, “The high altitude observatory coronagraph/polarimeter on the solar maximum mission,” Sol. Phys. 65, 91–107 (1980).
[CrossRef]

G. E. Brueckner, R. A. Howard, M. J. Koomen, C. M. Korendyke, D. J. Michels, D. G. Socker, K. P. Dere, P. L. Lamy, A. Llebaria, M.-V. Bout, R. Schwenn, G. M. Simnett, D. K. Bedford, and D. J. Eyles, “The large angle spectroscopic coronagraph (LASCO),” Sol. Phys. 162, 357–402 (1995).
[CrossRef]

Sov. Astron. (1)

A. V. Lensky, “Theoretical assessment of efficiency of coronagraph external occulting systems,” Sov. Astron. 25(3), 366–372 or Astron. Zhurn. 58, 648–659 (1981) (in Russian).

Other (2)

E. Hecht, Optics, 4th ed. (Adelphi University, 2002), p. 498.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 2001), p. 478.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (22)

Fig. 1.
Fig. 1.

Schematic of the externally occulted coronagraph. A0, external diaphragm; D1, external occulter; A1, entrance aperture; O1, objective lens; D2, internal occulter; O2, field lens; O3, relay lens with Lyot spot; F, focal plane [4].

Fig. 2.
Fig. 2.

Semi-infinite rectangle; the rectangle extends infinitely to the left.

Fig. 3.
Fig. 3.

Square mask. Only the central square part is opaque; the rest, including the blue corners, transmits light. Parts 1–4 are the calculated parts of the semi-infinite rectangle. Infinite dimension always points outward. Parts 5–8 are ignored.

Fig. 4.
Fig. 4.

Dodecagon mask. Only the central dodecagon is opaque; the rest, including the white triangles, transmits light. Parts 1–12 are the calculated parts of the semi-infinite rectangle. Infinite dimension always points outward. Diffraction due to Part 14 can be obtained by symmetric transformation of that due to Part 13 with respect to the θ0=θ1 axis. Diffraction due to Part 15 can be obtained by symmetric transformation of that due to Parts 13 and 14 with respect to the θ0=θ2 axis. Diffraction due to Part 16 can be obtained by symmetric transformation of that due to Parts 13, 14, and 15 with respect to the θ0=θ3 axis. Diffraction due to Part 17 can be obtained by symmetric transformation of that due to Part 16 with respect to the θ0=θ4 axis.

Fig. 5.
Fig. 5.

Four-toothed mask. Only the central four-toothed part is opaque; the rest, including the white parts, transmits light. Parts 5–12 are the calculated parts of the semi-infinite rectangle. Infinite dimension always points outward. Diffraction due to Parts 3 and 4 can be obtained by symmetric transformation of that due to Part 1.

Fig. 6.
Fig. 6.

Schematic diagram of diffraction of the semi-infinite rectangle (the left-hand screen is opaque except for the semi-infinite rectangle).

Fig. 7.
Fig. 7.

Schematic diagram of diffraction of the square mask.

Fig. 8.
Fig. 8.

Diffracted field of the square mask calculated by the semi-infinite rectangle method.

Fig. 9.
Fig. 9.

Diffraction intensities of the square mask calculated by the semi-infinite rectangle method (dashed line) and the Fresnel integration formula (solid line). Intensities are calculated along the direction of θ0=θ1 (Fig. 3), where the corner problem is largest.

Fig. 10.
Fig. 10.

Ratio of diffraction intensity from the corner to that from the entire square. Calculation is along θ0=θ1 (Fig. 3), where the corner problem is largest.

Fig. 11.
Fig. 11.

Diffracted intensities of a circular disk calculated by the semi-infinite rectangle method (N=256) and the Fresnel–Kirchhoff formula.

Fig. 12.
Fig. 12.

Diagram of the toothed occulter or diaphragm [8].

Fig. 13.
Fig. 13.

Schematic diagram of diffraction from the toothed disk.

Fig. 14.
Fig. 14.

Toothed occulter with four teeth and its diffracted field.

Fig. 15.
Fig. 15.

Toothed occulter with 16 teeth and its diffracted field.

Fig. 16.
Fig. 16.

Toothed occulter with 32 teeth and its diffracted field.

Fig. 17.
Fig. 17.

Comparison of diffraction intensities of toothed occulter (lower curve) and circular disk (upper curve).

Fig. 18.
Fig. 18.

Average diffraction intensity as a function of the number of teeth for different tooth heights (solid line, 0.5 mm; dashed line, 2 mm). The lines are averaged over the circular region of radius r=2mm in the central part of the screen.

Fig. 19.
Fig. 19.

Diffraction intensity of toothed occulter with 32 teeth as a function of tooth height. Lines are averaged over a circular region of radius r=2mm in the central part of screen.

Fig. 20.
Fig. 20.

Diffraction intensity of the hexagonal mask calculated by the Fresnel–Kirchhoff formula (solid line) and the semi-infinite rectangle method (dashed line). Lines are plotted along one perpendicular bisector of the side line of the hexagon.

Fig. 21.
Fig. 21.

Diffraction intensity of the decagonal mask calculated by the Fresnel–Kirchhoff formula (solid line) and the semi-infinite rectangle method (dashed line). Lines are plotted along one perpendicular bisector of the side line of the decagon.

Fig. 22.
Fig. 22.

Diffracted fields of the four-toothed occulter by the Fresnel–Kirchhoff formula (dashed line) and the semi-infinite rectangle method (solid line).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

U(x0,y0)=U0eikz2j{[C(α2)+12]+j[S(α2)+12]}×{[C(β2)C(β1)]+j[S(β2)S(β1)]},
U1(r0,θ0)=U0eikz2j{[12C(α1)]+j[12S(α1)]}×{[C(β2)C(β1)]+j[S(β2)S(β1)]},
Us(r0,θ0)=U1(r0,θ0)+U1(r0,2θ1θ0)+U1(r0,2θ2θ0)+U1(r0,2θ22θ1+θ0).
I(r0,θ0)=I04{[C(α2)C(α1)]2+[S(α2)S(α1)]2}×{[C(β2)C(β1)]2+[S(β2)S(β1)]2},
U(r0,θ0)=U0eikz2j{[12C(α1)]+j[12S(α1)]}×{[12C(β1)]+j[12S(β1)]},
(x0y0)=(cosδsinδsinδcosδ)(x0y0).
{φ=2π/NL=ri2+re22rirecosφ=2wxsinie=risinφ/LR=resinieT=re2R2Lδ=arccos(T/ri),
U˜(r0,θ0)=U0eikz2j{[C(α2)C(α1)]+j[S(α2)S(α1)]}×{[C(β2)C(β1)]+j[S(β2)S(β1)]},
U(x0,y0)=U0λzy1y2x1x2ejkrdxdyU0λzejkzy1y2x1x2ejk(xx0)2+(yy0)22zdxdy,
α(2λz)12(xx0),β(2λz)12(yy0).
U(x0,y0)=U02ejkzα1α2ejπα22dαβ1β2ejπβ22dβ.
C(x)=0xcos(πξ22)dξ,S(x)=0xsin(πξ22)dξ.
U(x0,y0)=U02ejkz(C(α)+jS(α))|α1α2(C(β)+jS(β))|β1β2.
U(x0,y0)=U0ejkz2j{[C(α2)+12]+j[S(α2)+12]}×{[C(β2)C(β1)]+j[S(β2)S(β1)]}.

Metrics