Abstract

Optical sensing and imaging methods for biomedical applications, such as spectroscopy and laser-scanning fluorescence microscopy, are incapable of performing sensitive detection at high scan rates due to the fundamental trade-off between sensitivity and speed. This is because fewer photons are detected during short integration times and hence the signal falls below the detector noise. Optical postamplification can, however, overcome this challenge by amplifying the collected optical signal after collection and before photodetection. Here we present a theoretical analysis of the sensitivity of high-speed biomedical sensing and imaging systems enhanced by optical postamplifiers. As a case study, we focus on Raman amplifiers because they produce gain at any wavelength within the gain medium’s transparency window and are hence suitable for biomedical applications. Our analytical model shows that when limited by detector noise, such optically postamplified systems can achieve a sensitivity improvement of up to 20 dB in the visible to near-infrared spectral range without sacrificing speed. This analysis is expected to be valuable for design of fast real-time biomedical sensing and imaging systems.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
    [CrossRef]
  2. P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
    [CrossRef]
  3. S. G. Slade, R. N. Baker, and D. K. Brockman, The Complete Book of Laser Eye Surgery (Sourcebooks, 2002).
  4. M. Delius, “Twenty years of shock wave research at the institute for surgical research,” Eur. Surg. Res. 34, 30–36 (2002).
    [CrossRef]
  5. R. A. Riehle, Principles of Extracorporeal Shock Wave Lithotripsy (Churchill Livingston, 1987).
  6. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [CrossRef]
  7. T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
    [CrossRef]
  8. J. V. Watson, Introduction to Flow Cytometry (Cambridge University, 2004).
  9. J. Hult, R. S. Watt, and C. F. Kaminski, “High bandwidth absorption spectroscopy with a dispersed supercontinuum source,” Opt. Express 15, 11385–11395 (2007).
    [CrossRef]
  10. I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University, 1998).
  11. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
    [CrossRef]
  12. H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley, 2002).
  13. A. Diaspro, Confocal and Two-Photon Microscopy (Wiley, 2001).
  14. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
    [CrossRef]
  15. A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
    [CrossRef]
  16. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
    [CrossRef]
  17. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
    [CrossRef]
  18. F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
    [CrossRef]
  19. Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
    [CrossRef]
  20. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [CrossRef]
  21. P. Horowitz and W. Hill, The Art of Electronics (Cambridge University, 1989).
  22. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).
  23. M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
    [CrossRef]
  24. K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95, 251101 (2009).
    [CrossRef]
  25. A. Mahjoubfar, K. Goda, and B. Jalali, “Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA4.
  26. D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27, 1031–1033 (2002).
    [CrossRef]
  27. S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
    [CrossRef]
  28. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
    [CrossRef]
  29. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
    [CrossRef]
  30. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80, 4269–4283 (2008).
    [CrossRef]
  31. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
    [CrossRef]
  32. M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236–242 (2003).
    [CrossRef]
  33. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  34. C. H. Kim, J. Bromage, and R. M. Jopson, “Reflection-induced penalty in Raman amplified systems,” IEEE Photon. Technol. Lett. 14, 573–575 (2002).
    [CrossRef]
  35. M. N. Islam, Raman Amplifiers for Telecommunications (Springer, 2004).
  36. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12, 528–530 (2000).
    [CrossRef]
  37. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
    [CrossRef]
  38. M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999).
    [CrossRef]
  39. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).
  40. C. R. S. Fludger, V. Handerek, and R. J. Mears, “Pump to signal RIN transfer in Raman fiber amplifiers,” J. Lightwave Technol. 19, 1140–1148 (2001).
    [CrossRef]
  41. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  42. H. Kogelnik and A. Yariv, “Considerations of noise and schemes for its reduction in laser amplifiers,” in Proceedings of IEEE Conference on Electron Device Research (IEEE, 1964), pp. 165–172.
  43. K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, “Scaling of the Raman gain coefficient: applications to Germanosilicate fibers,” J. Lightwave Technol. 21, 1652–1662 (2003).
    [CrossRef]

2013 (2)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[CrossRef]

2012 (1)

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

2011 (1)

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

2010 (1)

2009 (5)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95, 251101 (2009).
[CrossRef]

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
[CrossRef]

2008 (2)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80, 4269–4283 (2008).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

2007 (1)

2006 (2)

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
[CrossRef]

2005 (2)

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

2003 (3)

2002 (4)

D. Bird and M. Gu, “Compact two-photon fluorescence microscope based on a single-mode fiber coupler,” Opt. Lett. 27, 1031–1033 (2002).
[CrossRef]

C. H. Kim, J. Bromage, and R. M. Jopson, “Reflection-induced penalty in Raman amplified systems,” IEEE Photon. Technol. Lett. 14, 573–575 (2002).
[CrossRef]

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

M. Delius, “Twenty years of shock wave research at the institute for surgical research,” Eur. Surg. Res. 34, 30–36 (2002).
[CrossRef]

2001 (1)

2000 (1)

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12, 528–530 (2000).
[CrossRef]

1999 (1)

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999).
[CrossRef]

1998 (1)

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

1991 (1)

Adam, J.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Agrawal, G. P.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).

Ayazi, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Baker, R. N.

S. G. Slade, R. N. Baker, and D. K. Brockman, The Complete Book of Laser Eye Surgery (Sourcebooks, 2002).

Bird, D.

Boyraz, O.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
[CrossRef]

Brockman, D. K.

S. G. Slade, R. N. Baker, and D. K. Brockman, The Complete Book of Laser Eye Surgery (Sourcebooks, 2002).

Bromage, J.

K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, “Scaling of the Raman gain coefficient: applications to Germanosilicate fibers,” J. Lightwave Technol. 21, 1652–1662 (2003).
[CrossRef]

C. H. Kim, J. Bromage, and R. M. Jopson, “Reflection-induced penalty in Raman amplified systems,” IEEE Photon. Technol. Lett. 14, 573–575 (2002).
[CrossRef]

Brown, R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Capewell, D.

Ch’ng, Y. H.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Chen, C.

Chen, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Chernikov, S. V.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12, 528–530 (2000).
[CrossRef]

Chung, S.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Ctyroký, J.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236–242 (2003).
[CrossRef]

Delius, M.

M. Delius, “Twenty years of shock wave research at the institute for surgical research,” Eur. Surg. Res. 34, 30–36 (2002).
[CrossRef]

DeMarco, J. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Di Carlo, D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Diaspro, A.

A. Diaspro, Confocal and Two-Photon Microscopy (Wiley, 2001).

DiGiovanni, D. J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Epstein, I. R.

I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University, 1998).

Eskildsen, L.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Fard, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Fludger, C. R. S.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95, 251101 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

A. Mahjoubfar, K. Goda, and B. Jalali, “Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA4.

Golshani, P.

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

Goncalves, J. T.

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

Gossett, D. R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Gu, M.

Han, Y.

Handerek, V.

Hansen, P. B.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).

Heise, H. M.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley, 2002).

Hill, W.

P. Horowitz and W. Hill, The Art of Electronics (Cambridge University, 1989).

Homola, J.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236–242 (2003).
[CrossRef]

Horowitz, P.

P. Horowitz and W. Hill, The Art of Electronics (Cambridge University, 1989).

Hosseini, H. M. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Hult, J.

Islam, M. N.

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

M. N. Islam, Raman Amplifiers for Telecommunications (Springer, 2004).

Jalali, B.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95, 251101 (2009).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations,” J. Lightwave Technol. 21, 3085–3103 (2003).
[CrossRef]

A. Mahjoubfar, K. Goda, and B. Jalali, “Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA4.

Jopson, R. M.

C. H. Kim, J. Bromage, and R. M. Jopson, “Reflection-induced penalty in Raman amplified systems,” IEEE Photon. Technol. Lett. 14, 573–575 (2002).
[CrossRef]

Judkins, J.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Kalyoncu, S. K.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
[CrossRef]

Kaminski, C. F.

Kara, P.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Kawata, S.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley, 2002).

Khoshkhoo, S.

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

Kidorf, H. D.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999).
[CrossRef]

Kim, C. H.

C. H. Kim, J. Bromage, and R. M. Jopson, “Reflection-induced penalty in Raman amplified systems,” IEEE Photon. Technol. Lett. 14, 573–575 (2002).
[CrossRef]

Kim, S. H.

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Kimura, S.

Kogelnik, H.

H. Kogelnik and A. Yariv, “Considerations of noise and schemes for its reduction in laser amplifiers,” in Proceedings of IEEE Conference on Electron Device Research (IEEE, 1964), pp. 165–172.

Leng, L.

Lewis, S. A. E.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12, 528–530 (2000).
[CrossRef]

Lim, C. S.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Lines, M. E.

Liu, A. Q.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Liu, Y.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Ma, M. X.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999).
[CrossRef]

Mahjoubfar, A.

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95, 251101 (2009).
[CrossRef]

A. Mahjoubfar, K. Goda, and B. Jalali, “Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA4.

Malik, O.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Maníková, Z.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236–242 (2003).
[CrossRef]

Mears, R. J.

Mostany, R.

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

Niazi, K. R.

Nissov, M.

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999).
[CrossRef]

Ohki, K.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Ozaki, Y.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley, 2002).

Pedrazzani, R.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Petty, H. R.

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
[CrossRef]

Piliarik, M.

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236–242 (2003).
[CrossRef]

Pojman, J. A.

I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University, 1998).

Portera-Cailliau, C.

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

Qian, F.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
[CrossRef]

Quake, S. R.

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

Rabizadeh, S.

Reid, R. C.

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

Riehle, R. A.

R. A. Riehle, Principles of Extracorporeal Shock Wave Lithotripsy (Churchill Livingston, 1987).

Rottwitt, K.

K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, “Scaling of the Raman gain coefficient: applications to Germanosilicate fibers,” J. Lightwave Technol. 21, 1652–1662 (2003).
[CrossRef]

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999).
[CrossRef]

Sarkhosh, N.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Siesler, H. W.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley, 2002).

Slade, S. G.

S. G. Slade, R. N. Baker, and D. K. Brockman, The Complete Book of Laser Eye Surgery (Sourcebooks, 2002).

Smirnakis, S.

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

Smith, H.

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

Sollier, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Song, Q.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
[CrossRef]

Song, W. Z.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Squires, T. M.

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

Stentz, A. J.

K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, “Scaling of the Raman gain coefficient: applications to Germanosilicate fibers,” J. Lightwave Technol. 21, 1652–1662 (2003).
[CrossRef]

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Strasser, T. A.

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

Taylor, J. R.

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12, 528–530 (2000).
[CrossRef]

Tien, E.

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
[CrossRef]

Tsia, K. K.

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

Wang, C.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Watson, J. V.

J. V. Watson, Introduction to Flow Cytometry (Cambridge University, 2004).

Watt, R. S.

Wilson, T.

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80, 4269–4283 (2008).
[CrossRef]

Yap, P. H.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Yariv, A.

H. Kogelnik and A. Yariv, “Considerations of noise and schemes for its reduction in laser amplifiers,” in Proceedings of IEEE Conference on Electron Device Research (IEEE, 1964), pp. 165–172.

Zhang, X. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 80, 4269–4283 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89, 203901 (2006).
[CrossRef]

K. Goda, A. Mahjoubfar, and B. Jalali, “Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging,” Appl. Phys. Lett. 95, 251101 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93, 131109 (2008).
[CrossRef]

A. Mahjoubfar, K. Goda, A. Ayazi, A. Fard, S. H. Kim, and B. Jalali, “High-speed nanometer-resolved imaging vibrometer and velocimeter,” Appl. Phys. Lett. 98, 101107 (2011).
[CrossRef]

Biomed. Opt. Express (1)

Biosystems (1)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83, 217–224 (2006).
[CrossRef]

Electron. Lett. (1)

M. Nissov, K. Rottwitt, H. D. Kidorf, and M. X. Ma, “Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers,” Electron. Lett. 35, 997–998 (1999).
[CrossRef]

Eur. Surg. Res. (1)

M. Delius, “Twenty years of shock wave research at the institute for surgical research,” Eur. Surg. Res. 34, 30–36 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Islam, “Raman amplifiers for telecommunications,” IEEE J. Sel. Top. Quantum Electron. 8, 548–559 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. H. Kim, J. Bromage, and R. M. Jopson, “Reflection-induced penalty in Raman amplified systems,” IEEE Photon. Technol. Lett. 14, 573–575 (2002).
[CrossRef]

S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor, “Characterization of double Rayleigh scatter noise in Raman amplifiers,” IEEE Photon. Technol. Lett. 12, 528–530 (2000).
[CrossRef]

P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh scattering limitations in distributed Raman pre-amplifiers,” IEEE Photon. Technol. Lett. 10, 159–161 (1998).
[CrossRef]

J. Lightwave Technol. (3)

J. Neurosci. (1)

P. Golshani, J. T. Goncalves, S. Khoshkhoo, R. Mostany, S. Smirnakis, and C. Portera-Cailliau, “Internally mediated developmental desynchronization of neocortical network activity,” J. Neurosci. 29, 10890–10899 (2009).
[CrossRef]

Nat. Photonics (1)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

Nature (2)

K. Ohki, S. Chung, Y. H. Ch’ng, P. Kara, and R. C. Reid, “Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex,” Nature 433, 597–603 (2005).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

Opt. Commun. (1)

F. Qian, Q. Song, E. Tien, S. K. Kalyoncu, and O. Boyraz, “Real-time optical imaging and tracking of micron-sized particles,” Opt. Commun. 282, 4672–4675 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80, 043821 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

T. M. Squires and S. R. Quake, “Microfluidics: fluid physics at the nanoliter scale,” Rev. Mod. Phys. 77, 977–1026 (2005).
[CrossRef]

Sci. Rep. (1)

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 445 (2012).
[CrossRef]

Sens. Actuators B (1)

M. Piliarik, J. Homola, Z. Maníková, and J. Čtyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236–242 (2003).
[CrossRef]

Other (14)

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).

A. Mahjoubfar, K. Goda, and B. Jalali, “Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA4.

M. N. Islam, Raman Amplifiers for Telecommunications (Springer, 2004).

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Communication Systems (Academic, 2005).

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).

H. Kogelnik and A. Yariv, “Considerations of noise and schemes for its reduction in laser amplifiers,” in Proceedings of IEEE Conference on Electron Device Research (IEEE, 1964), pp. 165–172.

J. V. Watson, Introduction to Flow Cytometry (Cambridge University, 2004).

I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics (Oxford University, 1998).

S. G. Slade, R. N. Baker, and D. K. Brockman, The Complete Book of Laser Eye Surgery (Sourcebooks, 2002).

R. A. Riehle, Principles of Extracorporeal Shock Wave Lithotripsy (Churchill Livingston, 1987).

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-Infrared Spectroscopy (Wiley, 2002).

A. Diaspro, Confocal and Two-Photon Microscopy (Wiley, 2001).

P. Horowitz and W. Hill, The Art of Electronics (Cambridge University, 1989).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Detector sensitivity improvement by an optical postamplifier in high-speed detection. (a) (i) The optical signal is buried in the thermal noise of the photodetector, (ii) whereas an optical postamplifier increases the optical signal with the thermal noise intact resulting in an improvement in the sensitivity of the detection system. (b) Comparison of the signal-to-noise ratios for photodetection (i) with and (ii) without an optical postamplifier shows that the optical postamplifier is useful when the detection sensitivity is thermal noise limited because the signal-to-noise ratio is directly proportional to the square of the collected optical power. Here, the signal-to-noise ratio and the collected optical power are both in logarithmic scale. ASE-ASE, amplified spontaneous emission self-beat; ASE-S, amplified spontaneous emission-signal beat; RIN, relative intensity noise; DRB, double Rayleigh backscattering. (These noise components are detailed in Section 3.)

Fig. 2.
Fig. 2.

Energy diagram of stimulated Raman scattering (SRS) and basic schematic of a SRS-based optical postamplifier. (a) Raman amplification is an optical process based on the phenomenon of SRS in which the input field (called the Stokes field) stimulates the inelastic scattering of a blue-shifted pump field inside an optical medium mediated by its vibrational modes (optical phonons). (b) A typical Raman amplifier consists of a single-mode silica fiber (gain medium), an input at the Stokes frequency, and one or two pump fields that couple into and out of the fiber via duplexers such as wavelength-division multiplexers or dichroic beamsplitters. The fiber is bidirectionally pumped in the forward and backward directions to optimize the performance of the amplifier.

Fig. 3.
Fig. 3.

Noise photocurrent variance per 1 Hz detection bandwidth versus the input power to the optical postamplifier (collected optical power). (a) DRB noise, (b) pump-to-Stokes RIN transfer, (c) ASE-signal beat noise, (d) ASE–ASE beat noise, (e) thermal noise, (f) shot noise, and (g) dark current noise. The ASE–ASE beat noise and the thermal noise are dominant at low input powers, while the RIN and DRB noise are significant at high input powers.

Fig. 4.
Fig. 4.

SNR over 100 MHz bandwidth for various detection methods. (a) Positive–intrinsic–negative (PIN) photodiode without a postamplifier. (b) PIN photodiode with a postamplifier. (c) Avalanche photodiode (APD) without a postamplifier. (d) APD with a postamplifier. Comparing (a) and (b), the use of the postamplifier improves the sensitivity of the photodiode detection system by P1/P2=19.4dB. Comparing (b) and (c), the combination of the postamplifier and the photodiode is better in sensitivity than an APD alone by P3/P2=9.1dB.

Fig. 5.
Fig. 5.

Predicted detection enhancement by optical postamplification over 100 MHz bandwidth in the visible to near-infrared spectral range. (a) Amplifier-enhanced sensitivity (minimum detectable power of the input signal) at various input wavelengths. (b) Sensitivity improvements by the postamplifier for a photodiode at various input wavelengths. Note that better sensitivities (lower minimum detectable powers) and higher sensitivity improvements are achievable at lower pump powers with the input signal at shorter wavelengths, while better optimum sensitivities and sensitivity improvements can be obtained at longer input wavelengths.

Tables (2)

Tables Icon

Table 1. Parameter Values Used to Evaluate the Power of Different Noise Components

Tables Icon

Table 2. Predicted Detection Sensitivity and Sensitivity Improvement at Various Wavelengthsa

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

dIsdz=gRIpIsαsIs,
dIpdz=ωpωsgRIpIsαpIp,
Ip(z)=Ipf(z)+Ipb(z),
Ipf(z)=Ipf(0)eαpz,Ipb(z)=Ipb(L)eαp(Lz).
Ipf(0)=Ppf(0)π(dp/2)2,Ipb(L)=Ppb(L)π(dp/2)2,
Is(z)=Ps(z)π(ds/2)2,
G(z)=Is(z)Is(0)=exp{gRαpIpf(0)(1eαpz)}×exp{gRαpIpb(L)(eαp(Lz)eαpL)}×exp{αsz},
fDRB=rs20LG2(z)zLG2(z)dzdz,
δiDRB2=2fDRB[rdG(L)Ps(0)]2,
RINs(f)={vs[αsL+lnG(L)]Leff}2{RINpf(f)[Ppf(0)Ppf(0)+Ppb(L)]2×[12eαpLcos(bfL/vs)+e2αpL(αpvs)2+(bf)2]+RINpb(f)[Ppb(L)Ppf(0)+Ppb(L)]2×[12eαpLcos(4πfL/vs)+e2αpL(αpvs)2+(4πf)2]},
Leff=1exp(αpL)αp,
b=2π(1vsvp).
δiRIN2=0BeRINs(f)[rdG(L)Ps(0)]2df.
δis-ASE2=4rd2G(L)Ps(0)SASEBe,
δiASE-ASE2=4rd2SASE2Be(BoBe2),
SASE=nspωsgRG(L)0LIp(z)G(z)dz.
nsp={1exp[(ωpωs)kBTf]}1,
δithermal2=4kBTdBeRL,
δishot2=2qrdG(L)Ps(0)Be,
δidark2=2qidarkBe,
gR(λs)=ΛsλsAeff(Λs)Aeff(λs)gR(Λs),
SNR=is2δitotal2=[rdG(L)Ps(0)]2δitotal2,
δitotal2=δiDRB2+δiRIN2+δisASE2+δiASE-ASE2+δithermal2+δishot2+δidark2.

Metrics