Abstract

The linear canonical transform (LCT) with a, b, c, d parameter plays an important role in quantum mechanics, optics, and signal processing. The eigenfunctions of the LCT are also important because they describe the self-imaging phenomenon in optical systems. However, the existing solutions for the eigenfunctions of the LCT are divided into many cases and they lack a systematic way to solve these eigenfunctions. In this paper, we find a linear, second-order, self-adjoint differential commuting operator that commutes with the LCT operator. Hence, the commuting operator and the LCT share the same eigenfunctions with different eigenvalues. The commuting operator is very general and simple when it is compared to the existing multiple-parameter differential equations. Then, the eigenfunctions can be derived systematically. The eigenvalues of the commuting operator have closed-form relationships with the eigenvalues of the LCT. We also simplify the eigenfunctions for |a+d|>2 and a+d=±2, b0 into the more compact closed form instead of the integral form. For |a+d|>2, the eigenfunctions are related to the parabolic cylinder functions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (142)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription