Abstract

Porous Vycor glass with nanopores is transparent in the visible region and is often used in colorimetric chemical sensing when impregnated with selectively reacting reagents. However, it has some disadvantages in sensing, since changes in the humidity of ambient air strongly affect its transmission. In this work, by combining a humidity-controlled thermostatic chamber and an ultraviolet–visible and near-infrared spectrophotometer through fiber optics, we analyzed the effect of increasing and decreasing humidity in the ambient air on the transparency change of the nanoporous glass. The transparency response in the visible region to changes in humidity is analyzed to correlate the turbidity response of the glass with the amount of water in it. The turbidity is found to be dependent on the inverse fourth power of the wavelength (1/λ4), which implies that Rayleigh-type scattering takes place for both adsorption and desorption of water. We show that measures of the extent of the optical inhomogeneity that causes the scattering, such as the effective radius of scatterers and their number density, exhibit a pronounced hysteretic characteristic for the imbibition and drainage of water, while the absorption inherent to imbibed water also shows another type of hysteresis that is quite similar to the sorption isotherms of water. On the basis of the above observations, we show that the transitory white turbidity of nanoporous glasses during changes in humidity can be consistently interpreted and quantitatively analyzed by a simple Rayleigh scattering mechanism.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
    [CrossRef]
  2. T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
    [CrossRef]
  3. Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
    [CrossRef]
  4. Y. Y. Maruo, J. Nakamura, and M. Uchiyama, “Development of formaldehyde sensing element using porous glass impregnated with β-diketone,” Talanta 74, 1141–1147 (2008).
    [CrossRef]
  5. Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
    [CrossRef]
  6. A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
    [CrossRef]
  7. T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
    [CrossRef]
  8. K. Izumi, M. Utiyama, and Y. Y. Maruo, “Evaluation of air quality with simple and easy chemical sensors: development of porous glass-based elements,” in International Conference on Control, Automation and Systems (IEEE, 2008), pp. 2756–2760.
  9. S. Ogawa, “1/λ4 scattering of light during the drying process in porous Vycor glass with nano-sized pores,” J. Opt. Soc. Am. A 30, 154–159 (2013).
    [CrossRef]
  10. M. E. Lines and P. Klocek, “Optical transmission theory,” in Infrared Fiber Optics, J. S. Sanghera and I. D. Aggarwal, eds. (CRC Press, 1998), p. 19.
  11. D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
    [CrossRef]
  12. D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
    [CrossRef]
  13. A. A. Evstrapov and N. A. Esikova, “Study of porous glasses by the methods of optical spectroscopy,” J. Opt. Technol. 75, 266–270 (2008).
    [CrossRef]
  14. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 31–39.
  15. F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).
  16. J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
    [CrossRef]
  17. J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
    [CrossRef]
  18. G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
    [CrossRef]
  19. T. M. Shaw, “Movement of a drying front in a porous material,” in Material Research Society Symposium Proceedings, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., Better Ceramics Through Chemistry II (Material Research Society, 1986), Vol. 73, pp. 215–223.
  20. T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
    [CrossRef]
  21. D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A 16, 3365–3376 (1983).
    [CrossRef]
  22. J. Schroeder, “Light scattering in glass,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic, 1977), Vol. 12, pp. 157–222.
  23. S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
    [CrossRef]
  24. P. R. Wakeling, “What is Vycor glass?” Appl. Opt. 18, 3208–3210 (1979).
  25. V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
    [CrossRef]
  26. V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
    [CrossRef]
  27. D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
    [CrossRef]

2013

2012

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

2008

A. A. Evstrapov and N. A. Esikova, “Study of porous glasses by the methods of optical spectroscopy,” J. Opt. Technol. 75, 266–270 (2008).
[CrossRef]

Y. Y. Maruo, J. Nakamura, and M. Uchiyama, “Development of formaldehyde sensing element using porous glass impregnated with β-diketone,” Talanta 74, 1141–1147 (2008).
[CrossRef]

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
[CrossRef]

2007

Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
[CrossRef]

2005

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
[CrossRef]

2004

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

2003

V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
[CrossRef]

2000

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

1999

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

1998

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

1995

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

1993

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

1990

G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
[CrossRef]

1987

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
[CrossRef]

1986

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

1983

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A 16, 3365–3376 (1983).
[CrossRef]

1979

1964

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

Abeles, B.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Ackermann, R.

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

Deckman, H. W.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Dollimore, D.

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

Eglehaaf, S. U.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

Esikova, N. A.

Evstrapov, A. A.

Gruener, S.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

Guilleux, A.

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

Hayashi, T.

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

Heal, G. R.

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

Herbolzheimer, E.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Hermes, H. E.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

Higuchi, M.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
[CrossRef]

Huber, P.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
[CrossRef]

Izumi, K.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
[CrossRef]

K. Izumi, M. Utiyama, and Y. Y. Maruo, “Evaluation of air quality with simple and easy chemical sensors: development of porous glass-based elements,” in International Conference on Control, Automation and Systems (IEEE, 2008), pp. 2756–2760.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 31–39.

Kityk, A. V.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

Klocek, P.

M. E. Lines and P. Klocek, “Optical transmission theory,” in Infrared Fiber Optics, J. S. Sanghera and I. D. Aggarwal, eds. (CRC Press, 1998), p. 19.

Knorr, K.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
[CrossRef]

Lines, M. E.

M. E. Lines and P. Klocek, “Optical transmission theory,” in Infrared Fiber Optics, J. S. Sanghera and I. D. Aggarwal, eds. (CRC Press, 1998), p. 19.

Liu, J.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Maruo, Y. Y.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
[CrossRef]

Y. Y. Maruo, J. Nakamura, and M. Uchiyama, “Development of formaldehyde sensing element using porous glass impregnated with β-diketone,” Talanta 74, 1141–1147 (2008).
[CrossRef]

Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
[CrossRef]

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

K. Izumi, M. Utiyama, and Y. Y. Maruo, “Evaluation of air quality with simple and easy chemical sensors: development of porous glass-based elements,” in International Conference on Control, Automation and Systems (IEEE, 2008), pp. 2756–2760.

Nakamura, J.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
[CrossRef]

Y. Y. Maruo, J. Nakamura, and M. Uchiyama, “Development of formaldehyde sensing element using porous glass impregnated with β-diketone,” Talanta 74, 1141–1147 (2008).
[CrossRef]

Novikov, A. F.

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

Ogawa, S.

Ohyama, T.

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

Page, J. H.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Rabinovich, E. M.

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

Rieger, H.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

Rouquerol, F.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Rouquerol, J.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Sadjadi, Z.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

Scherer, G. W.

G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
[CrossRef]

Schroeder, J.

J. Schroeder, “Light scattering in glass,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic, 1977), Vol. 12, pp. 157–222.

Shaw, T. M.

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
[CrossRef]

T. M. Shaw, “Movement of a drying front in a porous material,” in Material Research Society Symposium Proceedings, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., Better Ceramics Through Chemistry II (Material Research Society, 1986), Vol. 73, pp. 215–223.

Sing, K.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

Soprunyuk, V. P.

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
[CrossRef]

Tanaka, T.

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

Uchiyama, M.

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
[CrossRef]

Y. Y. Maruo, J. Nakamura, and M. Uchiyama, “Development of formaldehyde sensing element using porous glass impregnated with β-diketone,” Talanta 74, 1141–1147 (2008).
[CrossRef]

Utiyama, M.

K. Izumi, M. Utiyama, and Y. Y. Maruo, “Evaluation of air quality with simple and easy chemical sensors: development of porous glass-based elements,” in International Conference on Control, Automation and Systems (IEEE, 2008), pp. 2756–2760.

Wakeling, P. R.

Wallacher, D.

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
[CrossRef]

Weitz, D. A.

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Wilkinson, D.

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A 16, 3365–3376 (1983).
[CrossRef]

Willemsen, J. F.

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A 16, 3365–3376 (1983).
[CrossRef]

Wood, D. L.

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

Zemskii, V. I.

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

Appl. Opt.

J. Appl. Chem.

D. Dollimore and G. R. Heal, “An improved method for the calculation of pore size distribution from adsorption data,” J. Appl. Chem. 14, 109–114 (1964).
[CrossRef]

J. Ceram. Am. Soc.

G. W. Scherer, “Theory of drying,” J. Ceram. Am. Soc. 73, 3–14 (1990).
[CrossRef]

J. Low Temp. Phys.

V. P. Soprunyuk, D. Wallacher, P. Huber, R. Ackermann, K. Knorr, and A. V. Kityk, “Optical transmission measurements on phase transitions of O2 and CO in mesoporous glass,” J. Low Temp. Phys. 134, 1043–1053 (2004).
[CrossRef]

J. Non-Cryst. Solids

D. L. Wood and E. M. Rabinovich, “Infrared studies of alkoxide gels,” J. Non-Cryst. Solids 82, 171–176 (1986).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Technol.

J. Phys. A

D. Wilkinson and J. F. Willemsen, “Invasion percolation: a new form of percolation theory,” J. Phys. A 16, 3365–3376 (1983).
[CrossRef]

Phys. Rev. B

D. Wallacher, V. P. Soprunyuk, A. V. Kityk, P. Huber, and K. Knorr, “Capillary sublimation of Ar in mesoporous glass,” Phys. Rev. B 71, 052101 (2005).
[CrossRef]

V. P. Soprunyuk, D. Wallacher, P. Huber, and K. Knorr, “Freezing and melting of Ar in mesopores studied by optical transmission,” Phys. Rev. B 67, 144105 (2003).
[CrossRef]

Phys. Rev. E

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Adsorption and desorption of a wetting fluid in Vycor studied by acoustic and optical techniques,” Phys. Rev. E 52, 2763–2777 (1995).
[CrossRef]

Phys. Rev. Lett.

T. M. Shaw, “Drying as an immiscible displacement process with fluid counterflow,” Phys. Rev. Lett. 59, 1671–1674 (1987).
[CrossRef]

J. H. Page, J. Liu, B. Abeles, E. Herbolzheimer, H. W. Deckman, and D. A. Weitz, “Pore-space correlations in capillary condensation in Vycor,” Phys. Rev. Lett. 71, 1216–1219 (1993).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

S. Gruener, Z. Sadjadi, H. E. Hermes, A. V. Kityk, K. Knorr, S. U. Eglehaaf, H. Rieger, and P. Huber, “Anomalous front broadening during spontaneous imbibition in a matrix with elongated pores,” Proc. Natl. Acad. Sci. U.S.A. 109, 10245–10250 (2012).
[CrossRef]

Proc. SPIE

A. F. Novikov and V. I. Zemskii, “Glassy spectral gas sensors based on the immobilized indicators,” Proc. SPIE 2550, 119–129 (1995).
[CrossRef]

Sens. Actuators B

T. Ohyama, Y. Y. Maruo, T. Tanaka, and T. Hayashi, “A ppb-level NO2 detecting system using coloration reactions in porous glass and its humidity dependence,” Sens. Actuators B 64, 142–146 (2000).
[CrossRef]

T. Tanaka, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “Coloration reactions between NO2 and organic compounds in porous glass for cumulative gas sensor,” Sens. Actuators B 47, 65–69 (1998).
[CrossRef]

T. Tanaka, A. Guilleux, T. Ohyama, Y. Y. Maruo, and T. Hayashi, “A ppb-level NO2 gas sensor using coloration reactions in porous glass,” Sens. Actuators B 56, 247–253 (1999).
[CrossRef]

Y. Y. Maruo, “Measurement of ambient ozone using newly developed porous glass sensor,” Sens. Actuators B 126, 485–491 (2007).
[CrossRef]

Y. Y. Maruo, J. Nakamura, M. Uchiyama, M. Higuchi, and K. Izumi, “Development of formaldehyde sensing element using porous glass impregnated with Schiff’s reagent,” Sens. Actuators B 129, 544–550 (2008).
[CrossRef]

Talanta

Y. Y. Maruo, J. Nakamura, and M. Uchiyama, “Development of formaldehyde sensing element using porous glass impregnated with β-diketone,” Talanta 74, 1141–1147 (2008).
[CrossRef]

Other

K. Izumi, M. Utiyama, and Y. Y. Maruo, “Evaluation of air quality with simple and easy chemical sensors: development of porous glass-based elements,” in International Conference on Control, Automation and Systems (IEEE, 2008), pp. 2756–2760.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969), pp. 31–39.

F. Rouquerol, J. Rouquerol, and K. Sing, Adsorption by Powders & Porous Solids (Academic, 1999).

T. M. Shaw, “Movement of a drying front in a porous material,” in Material Research Society Symposium Proceedings, C. J. Brinker, D. E. Clark, and D. R. Ulrich, eds., Better Ceramics Through Chemistry II (Material Research Society, 1986), Vol. 73, pp. 215–223.

J. Schroeder, “Light scattering in glass,” in Treatise on Materials Science and Technology, M. Tomozawa and R. H. Doremus, eds. (Academic, 1977), Vol. 12, pp. 157–222.

M. E. Lines and P. Klocek, “Optical transmission theory,” in Infrared Fiber Optics, J. S. Sanghera and I. D. Aggarwal, eds. (CRC Press, 1998), p. 19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram of the measurement system for the transmission of a porous Vycor glass chip in the artificial environment.

Fig. 2.
Fig. 2.

Change in the ambient relative humidity around a porous Vycor glass chip and the corresponding response of the peak absorbance (α1900) at around the wavelength of 1900 nm as a function of exposure time in minutes. Temperature remains constant while the humidity is changed.

Fig. 3.
Fig. 3.

Change in UV–Vis–NIR light transmission spectra of a porous Vycor glass chip after (a) increasing the humidity from 20 to 80 %RH at a constant rate of 0.1 %RH/min for 0, 120, 240, 360, 480, and 600 min (which correspond to the cumulative exposure times of 120, 240, 360, 480, 600, and 720 min) and keeping it constant for 30 and 45 min (exposure times of 750 and 765 min), and after (b) decreasing the humidity from 80 to 20 %RH at the same rate of 0.1 %RH/min for 0, 60, 150, 225, 255, 270, 300, 360, and 600 min (which correspond to the cumulative exposure times of 760, 820, 910, 985, 1015, 1030, 1060, 1120, and 1360 min). The label of each line in the figures shows the cumulative exposure time inside the humidity-controlled thermostatic chamber and the filling fraction.

Fig. 4.
Fig. 4.

(a) Changes in the common logarithm of the transmission (which is proportional to the turbidity τ) during imbibition of water vapor as a function of the inverse fourth power of wavelength (1/λ4). The slope decreases gradually only within a limited range with increasing humidity. After the ambient humidity is set to be constant at about 80 %RH, the slope recovers gradually. The pore filling fraction (f) with imbibing water is estimated from the absorbance peak at around a wavelength of 1900 nm, normalized by the initial maximum value measured immediately after the removal from the immersion container [9]. (b) Changes in the common logarithm of the transmission (which is proportional to the turbidity τ) during drainage of water vapor as a function of the inverse fourth power of wavelength (1/λ4). The slope decreases gradually, becomes steeper, and then recovers again gradually with decreasing humidity. The range of the slope change during drainage is wider than that during imbibition.

Fig. 5.
Fig. 5.

Responses of the absorbance of a porous Vycor glass chip at around the wavelength of 1900 nm to the relative humidity change between 18 and 80 %RH inside the humidity-controlled thermostatic chamber. Pore filling fraction f with imbibing water is estimated from the absorbance peak at around a wavelength of 1900 nm, normalized by the initial maximum value measured immediately after the removal from the immersion container [9].

Fig. 6.
Fig. 6.

Volumetric sorption isotherm for water vapor in the Vycor glass sample used in the light scattering experiments. The horizontal axis shows the ratio of the pressure to the saturated pressure of the H2O gas at 298 K.

Fig. 7.
Fig. 7.

Time evolution of slope β of turbidity (τ) versus 1/λ4 plots and of the filling fraction estimated from the absorbance peak (α1900) at around a wavelength of 1900 nm. Although slope β increases gradually with increasing humidity, it starts to decrease at constant humidity. Furthermore, slope β initially increases remarkably to the maximum and then decreases and saturates to the minimum with decreasing humidity as the cumulative exposure time passes. On the other hand, as the time passes, the filling fraction increases with increasing humidity, and it decreases with decreasing humidity, while it still increases at constant humidity.

Fig. 8.
Fig. 8.

Slope β in the 350–800 nm range as a function of the relative humidity. For the adsorption branch, the slope increases monotonically a little with increasing humidity, but decreases at constant humidity. For the desorption branch, initially the slope takes a small value of 0.984×106μm3, then increases to the maximum value of 5.63×106μm3, and finally decreases and saturates to the minimum of 0.741×106μm3.

Fig. 9.
Fig. 9.

Slope β in the 350–800 nm range as a function of pore filling fraction f extracted from the peak absorbance at around 1900 nm. For comparison with the fully water-filled case, the previous result for a drying-after-dipping experiment (Fig. 4 in [9]) is included in the figure. Both slopes reach their peak value at about f=0.6.

Fig. 10.
Fig. 10.

Scatterer’s effective radius (rsca) as a function of pore filling fraction f for adsorption and desorption of water vapor. For adsorption, the effective radius of Rayleigh scatterers is initially about 2.94 nm and then gradually increases up to 4.96 nm with the change in the filling fraction from 0.22 to 0.62, which corresponds to the humidity increase. The radius reaches the second maximum of 5.32 nm at f=0.71 during the period of constant humidity. In contrast, for desorption, the radius starts with the value of about 4.98 nm, then becomes the maximum of 7.48 nm at about f=0.58, and finally approaches its initial value of about 2.94 nm.

Fig. 11.
Fig. 11.

Scatterer’s number density N as a function of pore filling fraction f for adsorption and desorption of water vapor. For adsorption, the number density starts with an initial maximum value of 2.81×1018cm3 and then decreases monotonically to 5.85×1017cm3 with increasing filling fraction from 0.22 to 0.62. During the period of constant humidity, the fraction still increases up to 0.73 with an almost saturated number density of about 4.98×1017cm3. In contrast, for desorption, the number density starts with the value of about 5.04×1017cm3, then decreases steeply and saturates to the minimum of 1.71×1017cm3 at about f=0.58, and finally steeply recovers to its initial density of 2.81×1018cm3.

Fig. 12.
Fig. 12.

Experimentally obtained values of refractive indices of nanoporous glass as a function of the pore filling fraction for adsorption (solid diamonds) and desorption (open squares). The solid line is estimated by using an effective-medium model [13].

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T(λ)=Iout/Iin=(1r)2·exp(τ·d),
r=(nanpna+np)2,
Csca=24π3V12λ4·{m21m2+2}2,
1dln(1T)=τ2dln(1r)βλ4+C,
r=1exp(C·d2).
n1(f)=f·nw+(1f)·na,
npC=1+r1r·na,
npeff(f)=φ·n1(f)+(1φ)·n2,

Metrics