Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Evaporating droplet hologram simulation for digital in-line holography setup with divergent beam

Not Accessible

Your library or personal account may give you access

Abstract

Generalized Lorenz–Mie theory (GLMT) for a multilayered sphere is used to simulate holograms produced by evaporating spherical droplets with refractive index gradient in the surrounding air/vapor mixture. Simulated holograms provide a physical interpretation of experimental holograms produced by evaporating Diethyl Ether droplets with diameter in the order of 50 μm and recorded in a digital in-line holography configuration with a divergent beam. Refractive index gradients in the surrounding medium lead to a modification of the center part of the droplet holograms, where the first fringe is unusually bright. GLMT simulations reproduce this modification well, assuming an exponential decay of the refractive index from the droplet surface to infinity. The diverging beam effect is also considered. In both evaporating and nonevaporating cases, an equivalence is found between Gaussian beam and plane wave illuminations, simply based on a magnification ratio to be applied to the droplets’ parameters.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Accurate 3D tracking and size measurement of evaporating droplets using in-line digital holography and “inverse problems” reconstruction approach

Mozhdeh Seifi, Corinne Fournier, Nathalie Grosjean, Loic Méès, Jean-Louis Marié, and Loic Denis
Opt. Express 21(23) 27964-27980 (2013)

Tensor ABCD law for misaligned inline particle holography of inclusions in a host droplet

Yingchun Wu, Marc Brunel, Xuecheng Wu, Jiajie Wang, Jia Chen, Denis Lebrun, Sébastien Coëtmellec, and Gérard Gréhan
Appl. Opt. 56(5) 1526-1535 (2017)

Optical force on a large sphere illuminated by Bessel beams: comparisons between ray optics method and generalized Lorenz–Mie theory

Shukun Song, Neng Wang, Wanli Lu, and Zhifang Lin
J. Opt. Soc. Am. A 31(10) 2192-2197 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved