Abstract

Photoacoustic/thermoacoustic tomography is an emerging hybrid imaging modality combining optical/microwave imaging with ultrasound imaging. Here, a k-wave MATLAB toolbox was used to simulate various configurations of excitation pulse shape, width, transducer types, and target object sizes to see their effect on the photoacoustic/thermoacoustic signals. A numerical blood vessel phantom was also used to demonstrate the effect of various excitation pulse waveforms and pulse widths on the reconstructed images. Reconstructed images were blurred due to the broadening of the pressure waves by the excitation pulse width as well as by the limited transducer bandwidth. The blurring increases with increase in pulse width. A deconvolution approach is presented here with Tikhonov regularization to correct the photoacoustic/thermoacoustic signals, which resulted in improved reconstructed images by reducing the blurring effect. It is observed that the reconstructed images remain unaffected by change in pulse widths or pulse shapes, as well as by the limited bandwidth of the ultrasound detectors after the use of the deconvolution technique.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
    [CrossRef]
  2. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
    [CrossRef]
  3. D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
    [CrossRef]
  4. A. A. Oraevsky, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
    [CrossRef]
  5. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, “Three dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998).
    [CrossRef]
  6. D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
    [CrossRef]
  7. M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
    [CrossRef]
  8. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
    [CrossRef]
  9. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
  10. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277 (2007).
    [CrossRef]
  11. D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
    [CrossRef]
  12. Y. Xu and L. H. V. Wang, “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542–548 (2006).
    [CrossRef]
  13. C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
    [CrossRef]
  14. R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express 13, 89–95 (2005).
    [CrossRef]
  15. K. H. Song, E. W. Stein, J. A. Margenthaler, and L. H. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033 (2008).
    [CrossRef]
  16. T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
    [CrossRef]
  17. D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
    [CrossRef]
  18. M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
    [CrossRef]
  19. X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
    [CrossRef]
  20. C. Lou, L. Nie, and D. Xu, “Effect of excitation pulse on thermoacoustic signal characteristics and the corresponding algorithm for optimization of image resolution,” J. Appl. Phys. 110, 083101 (2011).
    [CrossRef]
  21. B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
    [CrossRef]
  22. R. G. M. Kolkman, W. Steenbergen, and T. G. V. Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21, 134–139 (2006).
    [CrossRef]
  23. L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express 20, 1237–1246 (2012).
    [CrossRef]
  24. M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Probl. 26, 125002 (2010).
    [CrossRef]
  25. M. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
    [CrossRef]
  26. S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82–85 (1986).
    [CrossRef]
  27. Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49, 3117–3124 (2004).
    [CrossRef]
  28. T. Lu and H. Mao, “Deconvolution algorithm with LTI Wiener filter in photoacousic tomography,” in Photonics and Optoelectronics SOPO, Wuhan, 2009.
  29. Z. Dogan, T. Blu, and D. van de Ville, “Eigensensing and deconvolution for the reconstruction of heat absorption profiles from photoacoustic tomography data,” in Proceedings of the Tenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’13) (IEEE, 2013), pp. 1142–1145.
  30. A. N. Tikhonov and V. Y. Arsenirl, Solution of Ill-Posed Problems (Halsted, 1977).
  31. R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Elsevier, 2013).
  32. C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
    [CrossRef]

2013 (1)

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

2012 (3)

L. Zeng, G. Liu, D. Yang, and X. Ji, “3D-visual laser-diode-based photoacoustic imaging,” Opt. Express 20, 1237–1246 (2012).
[CrossRef]

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

2011 (1)

C. Lou, L. Nie, and D. Xu, “Effect of excitation pulse on thermoacoustic signal characteristics and the corresponding algorithm for optimization of image resolution,” J. Appl. Phys. 110, 083101 (2011).
[CrossRef]

2010 (6)

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Probl. 26, 125002 (2010).
[CrossRef]

2009 (3)

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

2008 (2)

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. H. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033 (2008).
[CrossRef]

2007 (1)

2006 (2)

Y. Xu and L. H. V. Wang, “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542–548 (2006).
[CrossRef]

R. G. M. Kolkman, W. Steenbergen, and T. G. V. Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21, 134–139 (2006).
[CrossRef]

2005 (2)

2004 (1)

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49, 3117–3124 (2004).
[CrossRef]

2003 (2)

M. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

2002 (1)

A. A. Oraevsky, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

2000 (1)

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

1998 (1)

1986 (1)

S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82–85 (1986).
[CrossRef]

Arsenirl, V. Y.

A. N. Tikhonov and V. Y. Arsenirl, Solution of Ill-Posed Problems (Halsted, 1977).

Aster, R. C.

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Elsevier, 2013).

Bauer, D. R.

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

Blu, T.

Z. Dogan, T. Blu, and D. van de Ville, “Eigensensing and deconvolution for the reconstruction of heat absorption profiles from photoacoustic tomography data,” in Proceedings of the Tenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’13) (IEEE, 2013), pp. 1142–1145.

Borchers, B.

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Elsevier, 2013).

Chen, Q.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49, 3117–3124 (2004).
[CrossRef]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

de Mul, F. F. M.

Dekker, A.

Dogan, Z.

Z. Dogan, T. Blu, and D. van de Ville, “Eigensensing and deconvolution for the reconstruction of heat absorption profiles from photoacoustic tomography data,” in Proceedings of the Tenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’13) (IEEE, 2013), pp. 1142–1145.

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Erpelding, T. N.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

Ghosh, S.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

Green, D.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Guo, Z.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

Haltmeier, M.

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Probl. 26, 125002 (2010).
[CrossRef]

Hoelen, C. G. A.

Hu, S.

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

Jankovic, L.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

Ji, X.

Kellnberger, S.

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Kim, C.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

Kiser, W. L.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

Klaase, J. M.

Kolkman, R. G. M.

Kruger, G. A.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

Kruger, R. A.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

Ku, G.

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Lanza, G. M.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

Leeuwen, T. G. V.

R. G. M. Kolkman, W. Steenbergen, and T. G. V. Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21, 134–139 (2006).
[CrossRef]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Li, C. H.

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

Liu, G.

Lou, C.

C. Lou, L. Nie, and D. Xu, “Effect of excitation pulse on thermoacoustic signal characteristics and the corresponding algorithm for optimization of image resolution,” J. Appl. Phys. 110, 083101 (2011).
[CrossRef]

Lu, T.

T. Lu and H. Mao, “Deconvolution algorithm with LTI Wiener filter in photoacousic tomography,” in Photonics and Optoelectronics SOPO, Wuhan, 2009.

Manohar, S.

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277 (2007).
[CrossRef]

Manzi, D. G.

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

Mao, H.

T. Lu and H. Mao, “Deconvolution algorithm with LTI Wiener filter in photoacousic tomography,” in Photonics and Optoelectronics SOPO, Wuhan, 2009.

Margenthaler, J. A.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. H. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033 (2008).
[CrossRef]

Maslov, K.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Miller, K. D.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

Nie, L.

C. Lou, L. Nie, and D. Xu, “Effect of excitation pulse on thermoacoustic signal characteristics and the corresponding algorithm for optimization of image resolution,” J. Appl. Phys. 110, 083101 (2011).
[CrossRef]

Ntziachristos, V.

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

A. A. Oraevsky, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

Pan, D.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

Pang, Y.

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Pashley, M. D.

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

Piras, D.

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

Pongers, R.

Prakash, J.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

Pramanik, M.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

Razansky, D.

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

Reinecke, D. R.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

Reynolds, H. E.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

Riad, S. M.

S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82–85 (1986).
[CrossRef]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef]

Senpan, A.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

Shaw, C. B.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

Siphanto, R. I.

Sitharaman, B.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Song, K. H.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. H. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033 (2008).
[CrossRef]

Steenbergen, W.

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277 (2007).
[CrossRef]

R. G. M. Kolkman, W. Steenbergen, and T. G. V. Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21, 134–139 (2006).
[CrossRef]

R. I. Siphanto, K. K. Thumma, R. G. M. Kolkman, T. G. van Leeuwen, F. F. M. de Mul, J. W. van Neck, L. N. A. van Adrichem, and W. Steenbergen, “Serial noninvasive photoacoustic imaging of neovascularization in tumor angiogenesis,” Opt. Express 13, 89–95 (2005).
[CrossRef]

Stein, E. W.

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. H. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033 (2008).
[CrossRef]

Stoica, G.

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Swierczewska, M.

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Thumma, K. K.

Thurber, C. H.

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Elsevier, 2013).

Tikhonov, A. N.

A. N. Tikhonov and V. Y. Arsenirl, Solution of Ill-Posed Problems (Halsted, 1977).

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

Vaartjes, S. E.

van Adrichem, L. N. A.

van de Ville, D.

Z. Dogan, T. Blu, and D. van de Ville, “Eigensensing and deconvolution for the reconstruction of heat absorption profiles from photoacoustic tomography data,” in Proceedings of the Tenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’13) (IEEE, 2013), pp. 1142–1145.

van den Engh, F. M.

van Hespen, J. C. G.

van Leeuwen, T. G.

van Neck, J. W.

Vollin, J. L.

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

Wang, D. X.

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Wang, L. H. V.

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. H. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033 (2008).
[CrossRef]

Y. Xu and L. H. V. Wang, “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542–548 (2006).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef]

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

M. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

Wang, X.

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

Wang, Y.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49, 3117–3124 (2004).
[CrossRef]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef]

Wickline, S. A.

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

Wittie, R. S.

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

Xie, X.

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Xin, H.

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

Xing, D.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49, 3117–3124 (2004).
[CrossRef]

Xu, D.

C. Lou, L. Nie, and D. Xu, “Effect of excitation pulse on thermoacoustic signal characteristics and the corresponding algorithm for optimization of image resolution,” J. Appl. Phys. 110, 083101 (2011).
[CrossRef]

Xu, M.

M. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

Xu, Y.

Y. Xu and L. H. V. Wang, “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542–548 (2006).
[CrossRef]

Yalavarthy, P. K.

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

Yang, D.

Zangerl, G.

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Probl. 26, 125002 (2010).
[CrossRef]

Zeng, L.

Zeng, Y. G.

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49, 3117–3124 (2004).
[CrossRef]

Biomaterials (1)

D. Pan, M. Pramanik, A. Senpan, S. Ghosh, S. A. Wickline, L. H. V. Wang, and G. M. Lanza, “Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons,” Biomaterials 31, 4088–4093 (2010).
[CrossRef]

IEEE Antennas Wireless Propag. Lett. (1)

X. Wang, D. R. Bauer, J. L. Vollin, D. G. Manzi, R. S. Wittie, and H. Xin, “Impact of microwave pulses on thermoacoustic imaging applications,” IEEE Antennas Wireless Propag. Lett. 11, 1634 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Piras, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron. 16, 730–739 (2010).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

Y. Xu and L. H. V. Wang, “Rhesus monkey brain imaging through intact skull with thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 542–548 (2006).
[CrossRef]

Inverse Probl. (1)

M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Probl. 26, 125002 (2010).
[CrossRef]

J. Appl. Phys. (1)

C. Lou, L. Nie, and D. Xu, “Effect of excitation pulse on thermoacoustic signal characteristics and the corresponding algorithm for optimization of image resolution,” J. Appl. Phys. 110, 083101 (2011).
[CrossRef]

J. Biomed. Opt. (5)

B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields,” J. Biomed. Opt. 15, 021314 (2010).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14, 024007 (2009).
[CrossRef]

K. H. Song, E. W. Stein, J. A. Margenthaler, and L. H. V. Wang, “Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model,” J. Biomed. Opt. 13, 054033 (2008).
[CrossRef]

C. H. Li and L. H. V. Wang, “Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector,” J. Biomed. Opt. 14, 024047 (2009).
[CrossRef]

C. B. Shaw, J. Prakash, M. Pramanik, and P. K. Yalavarthy, “LSQR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography,” J. Biomed. Opt. 18, 080501 (2013).
[CrossRef]

Lasers Med. Sci. (1)

R. G. M. Kolkman, W. Steenbergen, and T. G. V. Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21, 134–139 (2006).
[CrossRef]

Med. Phys. (2)

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys. 37, 4602–4607 (2010).
[CrossRef]

M. Pramanik, G. Ku, C. H. Li, and L. H. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008).
[CrossRef]

Nat. Biotechnol. (2)

V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23, 313–320 (2005).
[CrossRef]

D. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. H. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (2)

Y. Wang, D. Xing, Y. G. Zeng, and Q. Chen, “Photoacoustic imaging with deconvolution algorithm,” Phys. Med. Biol. 49, 3117–3124 (2004).
[CrossRef]

M. Pramanik, K. H. Song, M. Swierczewska, D. Green, B. Sitharaman, and L. H. V. Wang, “In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node,” Phys. Med. Biol. 54, 3291–3301 (2009).
[CrossRef]

Phys. Rev. E (1)

M. Xu and L. H. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).
[CrossRef]

Proc. IEEE (1)

S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82–85 (1986).
[CrossRef]

Proc. SPIE (1)

A. A. Oraevsky, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” Proc. SPIE 4618, 81–94 (2002).
[CrossRef]

Radiology (2)

T. N. Erpelding, C. Kim, M. Pramanik, L. Jankovic, K. Maslov, Z. Guo, J. A. Margenthaler, M. D. Pashley, and L. H. V. Wang, “Sentinel lymph nodes in the rat: noninvasive photoacoustic and U.S. imaging with a clinical U.S. system,” Radiology 256, 102–110 (2010).
[CrossRef]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, “Breast cancer in vivo: contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).

Science (1)

L. H. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335, 1458–1462 (2012).
[CrossRef]

Other (4)

T. Lu and H. Mao, “Deconvolution algorithm with LTI Wiener filter in photoacousic tomography,” in Photonics and Optoelectronics SOPO, Wuhan, 2009.

Z. Dogan, T. Blu, and D. van de Ville, “Eigensensing and deconvolution for the reconstruction of heat absorption profiles from photoacoustic tomography data,” in Proceedings of the Tenth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’13) (IEEE, 2013), pp. 1142–1145.

A. N. Tikhonov and V. Y. Arsenirl, Solution of Ill-Posed Problems (Halsted, 1977).

R. C. Aster, B. Borchers, and C. H. Thurber, Parameter Estimation and Inverse Problems (Elsevier, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the simulation geometry for PA/TA signal study in 2D. However, actual simulations were done in 3D. (b) The excitation pulse waveforms: sinusoidal, square (rise and fall time of tp/10), Gaussian, and triangular. Pulse width tp=2μs. (c) Simulation geometry showing blood vessel network for image reconstruction using deconvolution algorithm. 200 ultrasound transducers were placed at 18 mm distance from the center of the target. (d) A simplified block diagram showing the excitation pulse convoluted with PA/TA system impulse response. (e) Block diagram showing the effect of transducer finite bandwidth in the detected PA/TA signals.

Fig. 2.
Fig. 2.

PA/TA signals generated from 1 mm radius spherical target with (a) impulse, (b) sinusoidal, (c) square, (d) Gaussian, and (e) triangular excitation pulse of varying pulse width. Signals are normalized with maximum signal amplitude. The transducer was assumed to be a point detector. (f)–(j) Spectrum of corresponding PA/TA signals. The spectrum is normalized individually.

Fig. 3.
Fig. 3.

PA/TA signals detected using broad transducer (6 mm diameter active area transducer), (a) Impulse excitation, (b) Gaussian excitation with various pulse widths. Target object is of 1 mm radius. (c) and (d) Spectrum of corresponding PA/TA signals.

Fig. 4.
Fig. 4.

PA/TA waves generated from various spherical target sizes for (a) impulse, (b) sinusoidal, (c) square, (d) Gaussian, and (e) triangular excitation pulse. Pulse width=1μs. The transducer was assumed to be a point detector. (f)–(j) Spectrum of corresponding PA/TA signals.

Fig. 5.
Fig. 5.

PA/TA waves generated from varying object size with broad transducer (a) impulse excitation, (b) Gaussian excitation with 1 μs pulse width. (c) and (d) Spectrum of corresponding PA/TA signals.

Fig. 6.
Fig. 6.

(a) Numerical blood vessel network phantom. Initial pressure rise assumed to be 1 Pa. Reconstructed images using k-wave time reversal method for various excitation pulse widths (b) 0.25 μs, (c) 0.5 μs, (d) 1 μs, and (e) 2 μs. Excitation pulse is Gaussian. (f)–(i) Corresponding reconstructed images after deconvolution operation.

Fig. 7.
Fig. 7.

Reconstructed images for different excitation pulse shape (a) sinusoidal, (b) square, and (c) triangular. Pulse width=0.5μs. (d)–(f) Corresponding reconstructed images after deconvolution operation.

Fig. 8.
Fig. 8.

Reconstructed for different excitation pulse shapes with transducer bandwidth effect (a) Gaussian, (b) sinusoidal, (c) square, and (d) triangular. Pulse width=0.5μs. (e)–(h) Corresponding reconstructed images after deconvolution operation for only excitation pulse width correction. (i)–(l) Corresponding reconstructed images after deconvolution operation for both excitation and transducer bandwidth correction was done.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

SNR(dB)=20log(mean signal/noise standard deviation).
y[n]=x[n]*h[n],
Y=XH,
H=Y/X.
y=x*h+noise.
y=Mh+noise,
A(h)=yMh2+λh2,
A(h)={[yMh]T[yMh]}+λ(hTh).
MTy=MTMhTikhonov+λhTikhonov,
x[n]*y[n]=x[n]*x[n]*h[n]+λh[n].
conj{X}Y=[conj{X}]XHTikhonov+λHTikhonov,
HTikhonov=conj{X}Y/[conj{X}X+λ].
y=h1*z+noise.
ZTy=ZTZh1+λh1,
H1Tikhonov=[conj(H2X)]Y/([conj(H2X)]H2X+λ).

Metrics