S. P. Kearney and F. Pierce, “Evidence of soot superaggregates in a turbulent pool fire,” Combust. Flame 159, 3191–3198 (2012).

[CrossRef]

M. J. Berg, “Power-law patterns in electromagnetic scattering: a selected review and recent progress,” J. Quant. Spectrosc. Radiat. Transfer 113, 2292–2309 (2012).

[CrossRef]

Y. Zhao and M. Lin, “Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates,” J. Quant. Spectrosc. Radiat. Transfer 110, 315–322 (2009).

[CrossRef]

R. Dhaubhadel, C. S. Gerving, A. Chakrabarti, and C. M. Sorensen, “Aerosol gelation: synthesis of a novel, lightweight, high specific surface area material,” Aerosol Sci. Technol. 41, 804–810 (2007).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

R. Dhaubhadel, F. Pierce, A. Chakrabarti, and C. M. Sorensen, “Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol,” Phys. Rev. E 73, 011404 (2006).

[CrossRef]

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).

[CrossRef]

L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” J. Geophys. Res. 110 D11211 (2005).

[CrossRef]

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observations of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).

[CrossRef]

C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol. 35, 648–687 (2001).

[CrossRef]

A. M. Brasil, T. L. Farias, M. G. Carvalho, and U. O. Koylu, “Numerical characterization of the morphology of aggregated particles,” Aerosol Sci. Technol. 32, 489–508 (2001).

[CrossRef]

C. M. Sorensen and G. C. Roberts, “The prefactor of fractal aggregates,” J. Colloid Interface Sci. 186, 447–452 (1997).

[CrossRef]

K. C. Smyth and C. R. Shaddix, “The elusive history of m=1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]

D. M. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).

[CrossRef]

N. G. Khlebtsov and A. G. Melnikov, “Structure factor and exponent of scattering by polydisperse fractal colloidal aggregates,” J. Colloid Interface Sci. 163, 145–151 (1994).

[CrossRef]

N. Lu and C. M. Sorensen, “Depolarized light scattering from fractal soot aggregates,” Phys. Rev. E 50, 3109 (1994).

[CrossRef]

N. G. Khlebtsov, “Optics of fractal clusters in the anomalous diffraction approximation,” J. Mod. Opt. 40, 2221–2235 (1993).

[CrossRef]

H. Y. Chen, M. F. Iskander, and J. E. Penner, “Light scattering and absorption by fractal agglomerates and coagulations of smoke,” J. Mod. Opt. 37, 171–181 (1990).

[CrossRef]

H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin, “In situ optical structure factor measurement of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988).

[CrossRef]

M. V. Berry and I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).

[CrossRef]

M. J. Berg, “Power-law patterns in electromagnetic scattering: a selected review and recent progress,” J. Quant. Spectrosc. Radiat. Transfer 113, 2292–2309 (2012).

[CrossRef]

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008).

[CrossRef]

M. J. Berg, “Reflection symmetry of a sphere’s internal field and its consequences on scattering: behavior of the Stokes parameters,” in Polarimetric Detection, Characterization and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds., NATO Science for Peace and Security Series C: Environmental Security (Springer, 2011), pp. 31–48.

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).

[CrossRef]

M. V. Berry and I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).

[CrossRef]

A. M. Brasil, T. L. Farias, M. G. Carvalho, and U. O. Koylu, “Numerical characterization of the morphology of aggregated particles,” Aerosol Sci. Technol. 32, 489–508 (2001).

[CrossRef]

A. M. Brasil, T. L. Farias, M. G. Carvalho, and U. O. Koylu, “Numerical characterization of the morphology of aggregated particles,” Aerosol Sci. Technol. 32, 489–508 (2001).

[CrossRef]

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008).

[CrossRef]

R. Dhaubhadel, C. S. Gerving, A. Chakrabarti, and C. M. Sorensen, “Aerosol gelation: synthesis of a novel, lightweight, high specific surface area material,” Aerosol Sci. Technol. 41, 804–810 (2007).

[CrossRef]

R. Dhaubhadel, F. Pierce, A. Chakrabarti, and C. M. Sorensen, “Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol,” Phys. Rev. E 73, 011404 (2006).

[CrossRef]

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observations of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).

[CrossRef]

H. Y. Chen, M. F. Iskander, and J. E. Penner, “Light scattering and absorption by fractal agglomerates and coagulations of smoke,” J. Mod. Opt. 37, 171–181 (1990).

[CrossRef]

R. Dhaubhadel, C. S. Gerving, A. Chakrabarti, and C. M. Sorensen, “Aerosol gelation: synthesis of a novel, lightweight, high specific surface area material,” Aerosol Sci. Technol. 41, 804–810 (2007).

[CrossRef]

R. Dhaubhadel, F. Pierce, A. Chakrabarti, and C. M. Sorensen, “Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol,” Phys. Rev. E 73, 011404 (2006).

[CrossRef]

A. M. Brasil, T. L. Farias, M. G. Carvalho, and U. O. Koylu, “Numerical characterization of the morphology of aggregated particles,” Aerosol Sci. Technol. 32, 489–508 (2001).

[CrossRef]

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observations of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).

[CrossRef]

R. Dhaubhadel, C. S. Gerving, A. Chakrabarti, and C. M. Sorensen, “Aerosol gelation: synthesis of a novel, lightweight, high specific surface area material,” Aerosol Sci. Technol. 41, 804–810 (2007).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

H. Y. Chen, M. F. Iskander, and J. E. Penner, “Light scattering and absorption by fractal agglomerates and coagulations of smoke,” J. Mod. Opt. 37, 171–181 (1990).

[CrossRef]

S. P. Kearney and F. Pierce, “Evidence of soot superaggregates in a turbulent pool fire,” Combust. Flame 159, 3191–3198 (2012).

[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

N. G. Khlebtsov and A. G. Melnikov, “Structure factor and exponent of scattering by polydisperse fractal colloidal aggregates,” J. Colloid Interface Sci. 163, 145–151 (1994).

[CrossRef]

N. G. Khlebtsov, “Optics of fractal clusters in the anomalous diffraction approximation,” J. Mod. Opt. 40, 2221–2235 (1993).

[CrossRef]

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observations of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).

[CrossRef]

A. M. Brasil, T. L. Farias, M. G. Carvalho, and U. O. Koylu, “Numerical characterization of the morphology of aggregated particles,” Aerosol Sci. Technol. 32, 489–508 (2001).

[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

Y. Zhao and M. Lin, “Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates,” J. Quant. Spectrosc. Radiat. Transfer 110, 315–322 (2009).

[CrossRef]

L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” J. Geophys. Res. 110 D11211 (2005).

[CrossRef]

N. Lu and C. M. Sorensen, “Depolarized light scattering from fractal soot aggregates,” Phys. Rev. E 50, 3109 (1994).

[CrossRef]

C. M. Sorensen, J. Cai, and N. Lu, “Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992).

[CrossRef]

N. G. Khlebtsov and A. G. Melnikov, “Structure factor and exponent of scattering by polydisperse fractal colloidal aggregates,” J. Colloid Interface Sci. 163, 145–151 (1994).

[CrossRef]

H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin, “In situ optical structure factor measurement of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988).

[CrossRef]

L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” J. Geophys. Res. 110 D11211 (2005).

[CrossRef]

D. M. Mackowski and M. I. Mishchenko, “Calculation of the T matrix and the scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).

[CrossRef]

M. I. Mishchenko, D. M. Mackowski, and L. D. Travis, “Scattering of light by bi-spheres with touching and separated components,” Appl. Opt. 34, 4589–4599 (1995).

[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin, “In situ optical structure factor measurement of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988).

[CrossRef]

H. Y. Chen, M. F. Iskander, and J. E. Penner, “Light scattering and absorption by fractal agglomerates and coagulations of smoke,” J. Mod. Opt. 37, 171–181 (1990).

[CrossRef]

M. V. Berry and I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).

[CrossRef]

S. P. Kearney and F. Pierce, “Evidence of soot superaggregates in a turbulent pool fire,” Combust. Flame 159, 3191–3198 (2012).

[CrossRef]

R. Dhaubhadel, F. Pierce, A. Chakrabarti, and C. M. Sorensen, “Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol,” Phys. Rev. E 73, 011404 (2006).

[CrossRef]

F. G. Pierce, “Aggregation in colloids and aerosols,” Ph.D. dissertation (Kansas State University, Manhattan, Kansas, 2007).

H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin, “In situ optical structure factor measurement of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988).

[CrossRef]

C. M. Sorensen and G. C. Roberts, “The prefactor of fractal aggregates,” J. Colloid Interface Sci. 186, 447–452 (1997).

[CrossRef]

K. C. Smyth and C. R. Shaddix, “The elusive history of m=1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observations of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).

[CrossRef]

K. C. Smyth and C. R. Shaddix, “The elusive history of m=1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Reflection symmetry of a sphere’s internal field and its consequences on scattering: a microphysical approach,” J. Opt. Soc. Am. A 25, 98–107 (2008).

[CrossRef]

R. Dhaubhadel, C. S. Gerving, A. Chakrabarti, and C. M. Sorensen, “Aerosol gelation: synthesis of a novel, lightweight, high specific surface area material,” Aerosol Sci. Technol. 41, 804–810 (2007).

[CrossRef]

R. Dhaubhadel, F. Pierce, A. Chakrabarti, and C. M. Sorensen, “Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol,” Phys. Rev. E 73, 011404 (2006).

[CrossRef]

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observations of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).

[CrossRef]

G. Wang and C. M. Sorensen, “Experimental test of the Rayleigh–Debye–Gans theory for light scattering by fractal aggregates,” Appl. Opt. 41, 4645–4651 (2002).

[CrossRef]

C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol. 35, 648–687 (2001).

[CrossRef]

C. M. Sorensen and G. C. Roberts, “The prefactor of fractal aggregates,” J. Colloid Interface Sci. 186, 447–452 (1997).

[CrossRef]

N. Lu and C. M. Sorensen, “Depolarized light scattering from fractal soot aggregates,” Phys. Rev. E 50, 3109 (1994).

[CrossRef]

C. M. Sorensen, J. Cai, and N. Lu, “Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992).

[CrossRef]

H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin, “In situ optical structure factor measurement of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988).

[CrossRef]

M. I. Mishchenko, D. M. Mackowski, and L. D. Travis, “Scattering of light by bi-spheres with touching and separated components,” Appl. Opt. 34, 4589–4599 (1995).

[CrossRef]

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin, “In situ optical structure factor measurement of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988).

[CrossRef]

Y. Zhao and M. Lin, “Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates,” J. Quant. Spectrosc. Radiat. Transfer 110, 315–322 (2009).

[CrossRef]

T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous particles: an investigative review,” Aerosol Sci. Technol. 40, 27–67 (2006).

[CrossRef]

C. M. Sorensen, “Light scattering by fractal aggregates: a review,” Aerosol Sci. Technol. 35, 648–687 (2001).

[CrossRef]

R. Dhaubhadel, C. S. Gerving, A. Chakrabarti, and C. M. Sorensen, “Aerosol gelation: synthesis of a novel, lightweight, high specific surface area material,” Aerosol Sci. Technol. 41, 804–810 (2007).

[CrossRef]

A. M. Brasil, T. L. Farias, M. G. Carvalho, and U. O. Koylu, “Numerical characterization of the morphology of aggregated particles,” Aerosol Sci. Technol. 32, 489–508 (2001).

[CrossRef]

M. I. Mishchenko, D. M. Mackowski, and L. D. Travis, “Scattering of light by bi-spheres with touching and separated components,” Appl. Opt. 34, 4589–4599 (1995).

[CrossRef]

C. M. Sorensen, J. Cai, and N. Lu, “Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992).

[CrossRef]

T. L. Farias, Ü. Ö. Köylü, and M. G. Carvalho, “Range of validity of the Rayleigh–Debye–Gans theory for optics of fractal aggregates,” Appl. Opt. 35, 6560–6567 (1996).

[CrossRef]

G. Wang and C. M. Sorensen, “Experimental test of the Rayleigh–Debye–Gans theory for light scattering by fractal aggregates,” Appl. Opt. 41, 4645–4651 (2002).

[CrossRef]

K. C. Smyth and C. R. Shaddix, “The elusive history of m=1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).

[CrossRef]

S. P. Kearney and F. Pierce, “Evidence of soot superaggregates in a turbulent pool fire,” Combust. Flame 159, 3191–3198 (2012).

[CrossRef]

C. M. Sorensen and G. C. Roberts, “The prefactor of fractal aggregates,” J. Colloid Interface Sci. 186, 447–452 (1997).

[CrossRef]

N. G. Khlebtsov and A. G. Melnikov, “Structure factor and exponent of scattering by polydisperse fractal colloidal aggregates,” J. Colloid Interface Sci. 163, 145–151 (1994).

[CrossRef]

L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” J. Geophys. Res. 110 D11211 (2005).

[CrossRef]

H. Y. Chen, M. F. Iskander, and J. E. Penner, “Light scattering and absorption by fractal agglomerates and coagulations of smoke,” J. Mod. Opt. 37, 171–181 (1990).

[CrossRef]

N. G. Khlebtsov, “Optics of fractal clusters in the anomalous diffraction approximation,” J. Mod. Opt. 40, 2221–2235 (1993).

[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).

[CrossRef]

M. J. Berg, “Power-law patterns in electromagnetic scattering: a selected review and recent progress,” J. Quant. Spectrosc. Radiat. Transfer 113, 2292–2309 (2012).

[CrossRef]

Y. Zhao and M. Lin, “Assessment of two fractal scattering models for the prediction of the optical characteristics of soot aggregates,” J. Quant. Spectrosc. Radiat. Transfer 110, 315–322 (2009).

[CrossRef]

C. M. Sorensen, W. Kim, D. Fry, D. Shi, and A. Chakrabarti, “Observations of soot superaggregates with a fractal dimension of 2.6 in laminar acetylene/air diffusion flames,” Langmuir 19, 7560–7563 (2003).

[CrossRef]

H. X. Zhang, C. M. Sorensen, E. R. Ramer, B. J. Olivier, and J. F. Merklin, “In situ optical structure factor measurement of an aggregating soot aerosol,” Langmuir 4, 867–871 (1988).

[CrossRef]

M. V. Berry and I. C. Percival, “Optics of fractal clusters such as smoke,” Opt. Acta 33, 577–591 (1986).

[CrossRef]

R. Dhaubhadel, F. Pierce, A. Chakrabarti, and C. M. Sorensen, “Hybrid superaggregate morphology as a result of aggregation in a cluster-dense aerosol,” Phys. Rev. E 73, 011404 (2006).

[CrossRef]

N. Lu and C. M. Sorensen, “Depolarized light scattering from fractal soot aggregates,” Phys. Rev. E 50, 3109 (1994).

[CrossRef]

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

M. J. Berg, “Reflection symmetry of a sphere’s internal field and its consequences on scattering: behavior of the Stokes parameters,” in Polarimetric Detection, Characterization and Remote Sensing, M. I. Mishchenko, Y. S. Yatskiv, V. K. Rosenbush, and G. Videen, eds., NATO Science for Peace and Security Series C: Environmental Security (Springer, 2011), pp. 31–48.

F. G. Pierce, “Aggregation in colloids and aerosols,” Ph.D. dissertation (Kansas State University, Manhattan, Kansas, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University, 2002).