Abstract

The tightly focused spots of cylindrical vectors (CVs) are dependent on polarization composition. We experimentally demonstrate the effect of polarization purity (PP) of the CV beam on the tightly focused spot quantitatively, which should be strictly controlled for the effective applications of the CV beam. The focal spots measured by a knife-edge scanning method showed that the azimuthally polarized (AP) component increases the transverse field and the size of the focal spots, while the radially polarized component results in a nonzero intensity distribution at the center of the focus even in a high PP AP beam.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
    [CrossRef]
  2. T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33, 122–124 (2008).
    [CrossRef]
  3. S. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef]
  4. T. Kampfe, S. Tonchev, A. Tishchenko, D. Gergov, and O. Parriaux, “Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband,” Opt. Express 20, 5392–5401 (2012).
    [CrossRef]
  5. J. Hamazaki, A. Kawamoto, R. Morita, and T. Omatsu, “Direct production of high-power radially-polarized output from a side-pumped Nd: YVO4 bounce amplifier using a photonic crystal mirror,” Opt. Express 16, 10762–10768 (2008).
    [CrossRef]
  6. M. Thirugnanasambandam, Y. Senatsky, and K. Ueda, “Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal,” Opt. Express 19, 1905–1914 (2011).
    [CrossRef]
  7. Q. Hu, Z. H. Tan, X. Y. Weng, H. M. Guo, Y. Wang, and S. L. Zhuang, “Design of cylindrical vector beams based on the rotating Glan polarizing prism,” Opt. Express 21, 7343–7353 (2013).
    [CrossRef]
  8. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef]
  9. W. J. Lai, B. C. Lim, P. B. Phua, K. S. Tiaw, H. H. Teo, and M. H. Hong, “Generation of radially polarized beam with a segmented spiral varying retarder,” Opt. Express 16, 15694–15699 (2008).
    [CrossRef]
  10. Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
    [CrossRef]
  11. S. Liu, P. Li, T. Peng, and J. L. Zhao, “Generation of arbitrary spatially variant polarization beams with a trapezoid Sagnac interferometer,” Opt. Express 20, 21715–21721 (2012).
    [CrossRef]
  12. B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
    [CrossRef]
  13. U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, “Highly efficient generation of vector beams through polarization holograms,” Appl. Phys. Lett. 102, 161104 (2013).
    [CrossRef]
  14. S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
    [CrossRef]
  15. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef]
  16. P. F. Ma, P. Zhou, Y. X. Ma, X. L. Wang, R. T. Su, and Z. J. Liu, “Generation of azimuthally and radially polarized beams by coherent polarization beam combination,” Opt. Lett. 37, 2658–2660 (2012).
    [CrossRef]
  17. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. A 253, 349–357 (1959).
    [CrossRef]
  18. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
    [CrossRef]
  19. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87 (2000).
    [CrossRef]
  20. D. Phohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
    [CrossRef]
  21. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [CrossRef]
  22. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).
  23. X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
    [CrossRef]
  24. L. X. Yang, X. S. Xie, S. C. Wang, and J. Y. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38, 1331–1333 (2013).
    [CrossRef]

2013 (6)

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, “Highly efficient generation of vector beams through polarization holograms,” Appl. Phys. Lett. 102, 161104 (2013).
[CrossRef]

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
[CrossRef]

Q. Hu, Z. H. Tan, X. Y. Weng, H. M. Guo, Y. Wang, and S. L. Zhuang, “Design of cylindrical vector beams based on the rotating Glan polarizing prism,” Opt. Express 21, 7343–7353 (2013).
[CrossRef]

L. X. Yang, X. S. Xie, S. C. Wang, and J. Y. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38, 1331–1333 (2013).
[CrossRef]

2012 (3)

2011 (1)

2009 (1)

2008 (4)

2005 (1)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

2000 (1)

1996 (1)

1994 (1)

1972 (1)

D. Phohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

1959 (2)

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Brown, T. G.

Cai, L. K.

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

Chong, C. T.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Cipparrone, G.

U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, “Highly efficient generation of vector beams through polarization holograms,” Appl. Phys. Lett. 102, 161104 (2013).
[CrossRef]

Dorn, R.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

Gergov, D.

Gu, Z. T.

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Guo, H. M.

Hamazaki, J.

Hao, X.

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Heckenberg, N.

Hell, S.

Hong, M. H.

Hu, H. F.

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

Hu, Q.

Kampfe, T.

Kawamoto, A.

Kuang, C. F.

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Lai, W. J.

Leuchs, G.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

Li, L.

X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
[CrossRef]

Li, P.

Li, S.

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Lim, B. C.

Liu, J. T.

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

Liu, S.

Liu, X.

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Liu, Z. J.

Lukyanchuk, B.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Ma, P. F.

Ma, Y. X.

Morita, R.

Nieminen, T.

Omatsu, T.

Pagliusi, P.

U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, “Highly efficient generation of vector beams through polarization holograms,” Appl. Phys. Lett. 102, 161104 (2013).
[CrossRef]

Parriaux, O.

Peng, T.

Phohl, D.

D. Phohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Phua, P. B.

Provenzano, C.

U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, “Highly efficient generation of vector beams through polarization holograms,” Appl. Phys. Lett. 102, 161104 (2013).
[CrossRef]

Quabis, S.

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Rubinsztein-Dunlop, H.

Ruiz, U.

U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, “Highly efficient generation of vector beams through polarization holograms,” Appl. Phys. Lett. 102, 161104 (2013).
[CrossRef]

Schadt, M.

Senatsky, Y.

Sheppard, C.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Shi, L. P.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Song, G. F.

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

Stalder, M.

Su, R. T.

Tan, Z. H.

Teo, H. H.

Thirugnanasambandam, M.

Tiaw, K. S.

Tishchenko, A.

Tonchev, S.

Ueda, K.

Wang, H. F.

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Wang, Q.

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

Wang, S. C.

X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
[CrossRef]

L. X. Yang, X. S. Xie, S. C. Wang, and J. Y. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38, 1331–1333 (2013).
[CrossRef]

Wang, X. L.

Wang, Y.

Wang, Z. X.

X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
[CrossRef]

Wei, X.

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

Weng, X. Y.

Wichmann, J.

Wolf, E.

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Xie, X. S.

L. X. Yang, X. S. Xie, S. C. Wang, and J. Y. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38, 1331–1333 (2013).
[CrossRef]

X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
[CrossRef]

Xu, B. Z.

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

Xue, Y.

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Yang, L. X.

Youngworth, K. S.

Zhan, Q. W.

Zhao, J. L.

Zheng, Z. R.

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Zhou, J. Y.

X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
[CrossRef]

L. X. Yang, X. S. Xie, S. C. Wang, and J. Y. Zhou, “Minimized spot of annular radially polarized focusing beam,” Opt. Lett. 38, 1331–1333 (2013).
[CrossRef]

Zhou, P.

Zhuang, S. L.

Adv. Opt. Photon. (1)

AIP Adv. (1)

X. S. Xie, L. Li, S. C. Wang, Z. X. Wang, and J. Y. Zhou, “Three-dimensional measurement of a tightly focused laser beam,” AIP Adv. 3, 022110 (2013).
[CrossRef]

Appl. Phys. B (1)

S. Quabis, R. Dorn, and G. Leuchs, “Generation of a radially polarized doughnut mode of high quality,” Appl. Phys. B 81, 597–600 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

D. Phohl, “Operation of a ruby laser in the purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

U. Ruiz, P. Pagliusi, C. Provenzano, and G. Cipparrone, “Highly efficient generation of vector beams through polarization holograms,” Appl. Phys. Lett. 102, 161104 (2013).
[CrossRef]

Chin. Phys. Lett. (1)

B. Z. Xu, J. T. Liu, L. K. Cai, H. F. Hu, Q. Wang, X. Wei, and G. F. Song, “The generation of a compact azimuthally polarized vertical-cavity surface emitting laser beam with radial slits,” Chin. Phys. Lett. 30, 034206 (2013).
[CrossRef]

J. Mod. Opt. (1)

R. Dorn, S. Quabis, and G. Leuchs, “The focus of light—linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1926 (2003).

Nat. Photonics (1)

H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008).
[CrossRef]

Opt. Commun. (1)

Z. T. Gu, C. F. Kuang, S. Li, Y. Xue, X. Hao, Z. R. Zheng, and X. Liu, “An interferential method for generating polarization-rotatable cylindrical vector beams,” Opt. Commun. 286, 6–12 (2013).
[CrossRef]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef]

Proc. R. Soc. A (2)

E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. A 253, 349–357 (1959).
[CrossRef]

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics