Abstract

To investigate the effects of rods and cones in mesopic visual sensitivity, we perform spectral sensitivity experiments by varying viewing fields and adaptation levels. We obtain mesopic spectral sensitivities for 2° and 10° centrally viewing fields and a (10°–20°) peripherally viewing field at adaptation luminance levels of 0.04cd/m2, 0.4cd/m2, and 1.8cd/m2. The spectral shapes are examined through comparison with the Commission International de l’Eclairage luminous efficiency functions. We observe a decrease of visual sensitivity with an increase of adaptation luminance and the dependence of visual sensitivity on viewing field. The observation is discussed in terms of the interaction between rods and cones.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Sharpe and A. Stockman, “Luminous efficiency functions,” in Visual Transduction and Non-Visual Light Perception, J. Tombran-Tink and C. J. Barnstable, eds. (Humana, 2008), pp. 329–352.
  2. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).
  3. Commission Internationale de l’Éclairage Proceedings, 1924 (Cambridge University, 1926).
  4. “Recommended system for mesopic photometry based on visual performance,” CIE Technical report (Commission Internationale de l’Éclairage, 2010).
  5. Commission Internationale de l’Éclairage Proceedings, 1951 (Commission Internationale de l’Éclairage, 1951).
  6. “Mesopic photometry Testing: history, special problems and practical solutions,” CIE Technical report (Commission Internationale de l’Éclairage, 1989).
  7. “Testing of supplementary systems of photometry,” CIE Technical report (Commission Internationale de l’Éclairage, 2001).
  8. S. E. Palmer, Vision Science: Photons to Phenomenology (Bradford, 1999), pp. 29–31.
  9. M. D. Fairchid, Color Appearance Models, 2nd ed. (Wiley, 2005), p. 11.
  10. “CIE supplementary system of photometry,” CIE Technical report (Commission Internationale de l’Éclairage, 2011).
  11. M. Puolakka and L. Halonen, “Implementation of CIE 191 mesopic photometry—ongoing and future actions,” in Proceedings of CIE x037:2012 (Commission Internationale de l’Éclairage, 2012), paper OP01.
  12. D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature 235, 173–174 (1972).
    [CrossRef]
  13. T. J. T. P. V. den Berg and H. Spekreijse, “Interaction between rod and cone signals studied with temporal sinewave stimulation,” J. Opt. Soc. Am. 67, 1210–1217 (1977).
    [CrossRef]
  14. R. F. Hess, K. T. Mullen, and K. Nordby, “Mutual rod-cone suppression within the central visual field,” Ophthalmol. Physiol. Opt. 12, 183–188 (1992).
    [CrossRef]
  15. S. H. Goldberg, T. E. Frumkes, and R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
    [CrossRef]
  16. N. J. Coletta and A. J. Adams, “Rod-cone interaction in flicker detection,” Vis. Res. 24, 1333–1340 (1984).
  17. L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A Luminous efficiency functions, V*(λ) for daylight adaptation,” J. Vis. 5(11):3, 948–968 (2005).
    [CrossRef]
  18. A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6):3, 1–8 (2013).
    [CrossRef]
  19. K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions for a ten-degree field in the mesopic range,” J. Light Vis. Env. 7, 37–44 (1983).
  20. K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions in the mesopic range,” J. Opt. Soc. Am. A 3, 71–75 (1986).
    [CrossRef]
  21. I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18 1–10 (2012).
  22. C. DeCusatis, Handbook of Applied Photometry (OSA and Springer-Verlag, 1998), p. 59.
  23. M. Kalloniatis and R. S. Harwerth, “Spectral sensitivity and adaptation characteristic of cone mechanisms under white-light adaptation,” J. Opt. Soc. Am. A 7, 1912–1928 (1990).
    [CrossRef]

2013 (1)

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6):3, 1–8 (2013).
[CrossRef]

2012 (1)

I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18 1–10 (2012).

2005 (1)

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A Luminous efficiency functions, V*(λ) for daylight adaptation,” J. Vis. 5(11):3, 948–968 (2005).
[CrossRef]

1992 (1)

R. F. Hess, K. T. Mullen, and K. Nordby, “Mutual rod-cone suppression within the central visual field,” Ophthalmol. Physiol. Opt. 12, 183–188 (1992).
[CrossRef]

1990 (1)

1986 (1)

1984 (1)

N. J. Coletta and A. J. Adams, “Rod-cone interaction in flicker detection,” Vis. Res. 24, 1333–1340 (1984).

1983 (2)

S. H. Goldberg, T. E. Frumkes, and R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef]

K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions for a ten-degree field in the mesopic range,” J. Light Vis. Env. 7, 37–44 (1983).

1977 (1)

1972 (1)

D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature 235, 173–174 (1972).
[CrossRef]

Adams, A. J.

N. J. Coletta and A. J. Adams, “Rod-cone interaction in flicker detection,” Vis. Res. 24, 1333–1340 (1984).

Atchison, D. A.

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6):3, 1–8 (2013).
[CrossRef]

Coletta, N. J.

N. J. Coletta and A. J. Adams, “Rod-cone interaction in flicker detection,” Vis. Res. 24, 1333–1340 (1984).

DeCusatis, C.

C. DeCusatis, Handbook of Applied Photometry (OSA and Springer-Verlag, 1998), p. 59.

den Berg, T. J. T. P. V.

Fairchid, M. D.

M. D. Fairchid, Color Appearance Models, 2nd ed. (Wiley, 2005), p. 11.

Frumkes, T. E.

S. H. Goldberg, T. E. Frumkes, and R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef]

Gehrmann, J.

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6):3, 1–8 (2013).
[CrossRef]

Goldberg, S. H.

S. H. Goldberg, T. E. Frumkes, and R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef]

Halonen, L.

M. Puolakka and L. Halonen, “Implementation of CIE 191 mesopic photometry—ongoing and future actions,” in Proceedings of CIE x037:2012 (Commission Internationale de l’Éclairage, 2012), paper OP01.

Harwerth, R. S.

Hess, R. F.

R. F. Hess, K. T. Mullen, and K. Nordby, “Mutual rod-cone suppression within the central visual field,” Ophthalmol. Physiol. Opt. 12, 183–188 (1992).
[CrossRef]

Jagla, W.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A Luminous efficiency functions, V*(λ) for daylight adaptation,” J. Vis. 5(11):3, 948–968 (2005).
[CrossRef]

Jägle, H.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A Luminous efficiency functions, V*(λ) for daylight adaptation,” J. Vis. 5(11):3, 948–968 (2005).
[CrossRef]

Kalloniatis, M.

MacLeod, D. I. A.

D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature 235, 173–174 (1972).
[CrossRef]

Mathur, A.

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6):3, 1–8 (2013).
[CrossRef]

McKeefry, D. J.

I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18 1–10 (2012).

Mullen, K. T.

R. F. Hess, K. T. Mullen, and K. Nordby, “Mutual rod-cone suppression within the central visual field,” Ophthalmol. Physiol. Opt. 12, 183–188 (1992).
[CrossRef]

Murray, I. J.

I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18 1–10 (2012).

Nordby, K.

R. F. Hess, K. T. Mullen, and K. Nordby, “Mutual rod-cone suppression within the central visual field,” Ophthalmol. Physiol. Opt. 12, 183–188 (1992).
[CrossRef]

Nygaard, R. W.

S. H. Goldberg, T. E. Frumkes, and R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef]

Palmer, S. E.

S. E. Palmer, Vision Science: Photons to Phenomenology (Bradford, 1999), pp. 29–31.

Panorgias, A.

I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18 1–10 (2012).

Parry, N. R. A.

I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18 1–10 (2012).

Puolakka, M.

M. Puolakka and L. Halonen, “Implementation of CIE 191 mesopic photometry—ongoing and future actions,” in Proceedings of CIE x037:2012 (Commission Internationale de l’Éclairage, 2012), paper OP01.

Sagawa, K.

K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions in the mesopic range,” J. Opt. Soc. Am. A 3, 71–75 (1986).
[CrossRef]

K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions for a ten-degree field in the mesopic range,” J. Light Vis. Env. 7, 37–44 (1983).

Sharpe, L. T.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A Luminous efficiency functions, V*(λ) for daylight adaptation,” J. Vis. 5(11):3, 948–968 (2005).
[CrossRef]

L. T. Sharpe and A. Stockman, “Luminous efficiency functions,” in Visual Transduction and Non-Visual Light Perception, J. Tombran-Tink and C. J. Barnstable, eds. (Humana, 2008), pp. 329–352.

Spekreijse, H.

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Stockman, A.

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A Luminous efficiency functions, V*(λ) for daylight adaptation,” J. Vis. 5(11):3, 948–968 (2005).
[CrossRef]

L. T. Sharpe and A. Stockman, “Luminous efficiency functions,” in Visual Transduction and Non-Visual Light Perception, J. Tombran-Tink and C. J. Barnstable, eds. (Humana, 2008), pp. 329–352.

Takeichi, K.

K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions in the mesopic range,” J. Opt. Soc. Am. A 3, 71–75 (1986).
[CrossRef]

K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions for a ten-degree field in the mesopic range,” J. Light Vis. Env. 7, 37–44 (1983).

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

J. Light Vis. Env. (1)

K. Sagawa and K. Takeichi, “Spectral luminous efficiency functions for a ten-degree field in the mesopic range,” J. Light Vis. Env. 7, 37–44 (1983).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Vis. (3)

I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18 1–10 (2012).

L. T. Sharpe, A. Stockman, W. Jagla, and H. Jägle, “A Luminous efficiency functions, V*(λ) for daylight adaptation,” J. Vis. 5(11):3, 948–968 (2005).
[CrossRef]

A. Mathur, J. Gehrmann, and D. A. Atchison, “Pupil shape as viewed along the horizontal visual field,” J. Vis. 13(6):3, 1–8 (2013).
[CrossRef]

Nature (1)

D. I. A. MacLeod, “Rods cancel cones in flicker,” Nature 235, 173–174 (1972).
[CrossRef]

Ophthalmol. Physiol. Opt. (1)

R. F. Hess, K. T. Mullen, and K. Nordby, “Mutual rod-cone suppression within the central visual field,” Ophthalmol. Physiol. Opt. 12, 183–188 (1992).
[CrossRef]

Science (1)

S. H. Goldberg, T. E. Frumkes, and R. W. Nygaard, “Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker,” Science 221, 180–182 (1983).
[CrossRef]

Vis. Res. (1)

N. J. Coletta and A. J. Adams, “Rod-cone interaction in flicker detection,” Vis. Res. 24, 1333–1340 (1984).

Other (12)

C. DeCusatis, Handbook of Applied Photometry (OSA and Springer-Verlag, 1998), p. 59.

L. T. Sharpe and A. Stockman, “Luminous efficiency functions,” in Visual Transduction and Non-Visual Light Perception, J. Tombran-Tink and C. J. Barnstable, eds. (Humana, 2008), pp. 329–352.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982).

Commission Internationale de l’Éclairage Proceedings, 1924 (Cambridge University, 1926).

“Recommended system for mesopic photometry based on visual performance,” CIE Technical report (Commission Internationale de l’Éclairage, 2010).

Commission Internationale de l’Éclairage Proceedings, 1951 (Commission Internationale de l’Éclairage, 1951).

“Mesopic photometry Testing: history, special problems and practical solutions,” CIE Technical report (Commission Internationale de l’Éclairage, 1989).

“Testing of supplementary systems of photometry,” CIE Technical report (Commission Internationale de l’Éclairage, 2001).

S. E. Palmer, Vision Science: Photons to Phenomenology (Bradford, 1999), pp. 29–31.

M. D. Fairchid, Color Appearance Models, 2nd ed. (Wiley, 2005), p. 11.

“CIE supplementary system of photometry,” CIE Technical report (Commission Internationale de l’Éclairage, 2011).

M. Puolakka and L. Halonen, “Implementation of CIE 191 mesopic photometry—ongoing and future actions,” in Proceedings of CIE x037:2012 (Commission Internationale de l’Éclairage, 2012), paper OP01.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Detection threshold method used in the spectral sensitivity experiment.

Fig. 2.
Fig. 2.

Experimental setup and viewport targets.

Fig. 3.
Fig. 3.

Spectral distribution of a white adaptation light used in the experiment, which was obtained from a combination of red, green, and blue LEDs.

Fig. 4.
Fig. 4.

Spectral visual sensitivities were measured under 2°, 10°, and (10°–20°) viewing fields at adaptation luminance of (a) 0.04cd/m2, (b) 0.4cd/m2, and (c) 1.8cd/m2 for 10 Hz flickering stimulation. Red circles, blue triangles, and green squares are the data points for the 2°, 10°, and (10°–20°) viewing fields, respectively.

Fig. 5.
Fig. 5.

Measured luminous efficiency functions under viewing field conditions of (a) 2°, (b) 10°, and (c) (10°–20°) are plotted with the CIE V(λ)s. The standard photopic luminous efficiency functions of the CIE 1924 V(λ) and the CIE 1964 V(λ) and the standard scotopic luminous efficiency function of the CIE 1951 V(λ) are plotted as solid, dotted, and dashed curves, respectively. The CIE 1924 V(λ) and the CIE 1964 V(λ) are for the 2° and 10° viewing conditions, respectively. Green circles, red triangles, and blue squares are data points for adaptation luminance of 0.04cd/m2, 0.4cd/m2, and 1.8cd/m2, respectively.

Fig. 6.
Fig. 6.

Measured luminous efficiency functions under 10° centrally viewing field condition at adaptation luminance of (a) 0.04cd/m2, (b) 0.4cd/m2, and (c) 1.8cd/m2 are plotted with the CIE Vmes(λ)s. Green circles and blue triangles are measured data for the subject 1 and subject 2, respectively.

Fig. 7.
Fig. 7.

Measured spectral sensitivities under viewing field conditions of (a) 2°, (b) 10°, and (c) (10°–20°). Green circles, red triangles, and blue squares are data points for adaptation luminance of 0.04cd/m2, 0.4cd/m2, and 1.8cd/m2, respectively.

Fig. 8.
Fig. 8.

Measured flicker detection thresholds are plotted as a function of adaptation luminance. Data points are the measured thresholds of the 2° (red circles) and (10°–20°) (blue triangles) viewing conditions at the spectral peaks of 550 and 510 nm, respectively. Blue curves are the least square fits of the deVries-Rose law to the (10°–20°) data.

Metrics