L. Landesa, M. J. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. J. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett. 37, 416–418 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).

[CrossRef]

F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011).

[CrossRef]

F. G. Mitri, “Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere,” IEEE Trans. Antennas Propag. 59, 4375–4379 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28, 2625–2632 (2011).

[CrossRef]

X. B. Ma and E. B. Li, “Scattering of an unpolarized Bessel beam by spheres,” Chin. Opt. Lett. 8, 1195–1198 (2010).

[CrossRef]

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).

[CrossRef]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989).

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).

[CrossRef]

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

L. Landesa, M. J. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. J. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett. 37, 416–418 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28, 2625–2632 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28, 2625–2632 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).

[CrossRef]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989).

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).

[CrossRef]

R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

L. Landesa, M. J. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007).

[CrossRef]

A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).

[CrossRef]

L. Landesa, M. J. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. J. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett. 37, 416–418 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

M. J. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett. 37, 416–418 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

L. Landesa, M. J. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. J. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett. 37, 416–418 (2012).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).

[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).

[CrossRef]

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).

[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).

[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).

[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).

[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).

[CrossRef]

F. G. Mitri, “Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere,” IEEE Trans. Antennas Propag. 59, 4375–4379 (2011).

[CrossRef]

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).

[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).

[CrossRef]

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007).

[CrossRef]

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).

[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).

[CrossRef]

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989).

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).

[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).

[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).

[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).

[CrossRef]

J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).

[CrossRef]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).

[CrossRef]

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).

[CrossRef]

J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).

[CrossRef]

L. Landesa, M. J. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).

[CrossRef]

M. J. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett. 37, 416–418 (2012).

[CrossRef]

F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011).

[CrossRef]

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).

[CrossRef]

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).

[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).