Abstract

In this paper, we introduce an efficient numerical method based on surface integral equations to characterize the scattering of a zero-order Bessel beam by arbitrarily shaped homogeneous dielectric particles. The incident beam is described by vector expressions in terms of the electric and magnetic fields that perfectly satisfy Maxwell’s equations. The scattering problems involving homogeneous dielectric particles with arbitrary shapes are formulated with the electric and magnetic current combined-field integral equation and modeled by using surface triangular patches. Solutions are performed iteratively by using the multilevel fast multipole algorithm. Some numerical results are included to illustrate the validity and capability of the proposed method. These results are also expected to provide useful insights into the scattering of a Bessel beam by complex-shaped particles.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).
    [CrossRef]
  2. J. S. Kim and S. S. Lee, “Scattering of laser beams and the optical potential well for a homogeneous sphere,” J. Opt. Soc. Am. 73, 303–312 (1983).
    [CrossRef]
  3. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
    [CrossRef]
  4. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
    [CrossRef]
  5. G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).
    [CrossRef]
  6. K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
    [CrossRef]
  7. J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).
    [CrossRef]
  8. Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).
    [CrossRef]
  9. Y. P. Han, G. Gréhan, and G. Gouesbet, “Generalized Lorenz–Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,” Appl. Opt. 42, 6621–6629 (2003).
    [CrossRef]
  10. Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28, 2625–2632 (2011).
    [CrossRef]
  11. P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007).
    [CrossRef]
  12. X. B. Ma and E. B. Li, “Scattering of an unpolarized Bessel beam by spheres,” Chin. Opt. Lett. 8, 1195–1198 (2010).
    [CrossRef]
  13. F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011).
    [CrossRef]
  14. F. G. Mitri, “Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere,” IEEE Trans. Antennas Propag. 59, 4375–4379 (2011).
    [CrossRef]
  15. R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.
  16. A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).
  17. Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).
    [CrossRef]
  18. T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).
    [CrossRef]
  19. K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).
    [CrossRef]
  20. R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989).
  21. S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).
    [CrossRef]
  22. X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
    [CrossRef]
  23. P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).
    [CrossRef]
  24. Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
    [CrossRef]
  25. L. Landesa, M. J. Araújo, J. M. Taboada, L. Bote, and F. Obelleiro, “Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies,” Opt. Express 20, 17237–17249 (2012).
    [CrossRef]
  26. Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).
  27. J. Rivero, J. M. Taboada, L. Landesa, F. Obelleiro, and I. García-Tuñón, “Surface integral equation formulation for the analysis of left-handed metamaterials,” Opt. Express 18, 15876–15886 (2010).
    [CrossRef]
  28. J. M. Taboada, J. Rivero, F. Obelleiro, M. J. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A 28, 1341–1348 (2011).
    [CrossRef]
  29. R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).
  30. J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).
    [CrossRef]
  31. Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).
    [CrossRef]
  32. M. J. Araújo, J. M. Taboada, J. Rivero, D. M. Solís, and F. Obelleiro, “Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm,” Opt. Lett. 37, 416–418 (2012).
    [CrossRef]
  33. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [CrossRef]
  34. S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
    [CrossRef]
  35. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).
  36. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
    [CrossRef]

2012

2011

2010

2009

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).
[CrossRef]

2007

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007).
[CrossRef]

2005

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).
[CrossRef]

2003

2001

1998

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

1997

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).
[CrossRef]

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
[CrossRef]

J. A. Lock, “Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder,” J. Opt. Soc. Am. A 14, 640–652 (1997).
[CrossRef]

1991

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

1990

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).
[CrossRef]

1989

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989).

1988

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

1987

1986

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).
[CrossRef]

1983

1982

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).
[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

1977

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).
[CrossRef]

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Araújo, M. J.

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Bote, L.

Chang, Y.

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).
[CrossRef]

Chew, W. C.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).
[CrossRef]

Cui, Z. W.

Z. W. Cui, Y. P. Han, and H. Y. Zhang, “Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles,” J. Opt. Soc. Am. B 28, 2625–2632 (2011).
[CrossRef]

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

Ding, C. Y.

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Durnin, J.

Edmonds, A. R.

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

Ergül, Ö.

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).
[CrossRef]

García-Tuñón, I.

Glisson, A. W.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

Gong, S. X.

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Gouesbet, G.

Gréhan, G.

Guo, L. X.

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Gürel, L.

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).
[CrossRef]

Han, X. E.

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Han, Y. P.

Harrington, R. F.

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989).

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).
[CrossRef]

R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).

Jin, J.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Kim, J. S.

Kozaki, S.

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).
[CrossRef]

Landesa, L.

Lee, S. S.

Li, E. B.

Li, M. L.

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

Li, R. X.

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Lock, J. A.

Lu, C. C.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Lu, C.-C.

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).
[CrossRef]

Ma, X. B.

Maheu, B.

Marston, P. L.

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007).
[CrossRef]

Miller, E. K.

A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).

Ming, J.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Mishra, S. R.

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

Mitri, F. G.

F. G. Mitri, “Arbitrary scattering of an electromagnetic zero-order Bessel beam by a dielectric sphere,” Opt. Lett. 36, 766–768 (2011).
[CrossRef]

F. G. Mitri, “Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere,” IEEE Trans. Antennas Propag. 59, 4375–4379 (2011).
[CrossRef]

Obelleiro, F.

Poggio, A. J.

A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).

Rao, S. M.

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).
[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).
[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

Ren, K. F.

K. F. Ren, G. Gréhan, and G. Gouesbet, “Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz–Mie theory: formulation and numerical results,” J. Opt. Soc. Am. A 14, 3014–3025 (1997).
[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Rivero, J.

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

Sheng, X. Q.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Solís, D. M.

Song, J.

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).
[CrossRef]

Song, M.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

Taboada, J. M.

Taflove, A.

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).
[CrossRef]

Taskinen, M.

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).
[CrossRef]

Tsai, L. L.

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).
[CrossRef]

Umashankar, K.

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).
[CrossRef]

Wilton, D. R.

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).
[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

Wu, T. K.

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).
[CrossRef]

Wu, Z. S.

Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501–2509 (2001).
[CrossRef]

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

Xu, Q.

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

Ylä-Oijala, P.

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).
[CrossRef]

Zhang, H. Y.

Appl. Opt.

Chin. Opt. Lett.

Electromagnetics

S. M. Rao and D. R. Wilton, “E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies,” Electromagnetics 10, 407–421 (1990).
[CrossRef]

IEEE Trans. Antennas Propag.

X. Q. Sheng, J. Ming, J. Jin, M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718–1726 (1998).
[CrossRef]

P. Ylä-Oijala and M. Taskinen, “Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects,” IEEE Trans. Antennas Propag. 53, 1168–1173 (2005).
[CrossRef]

Ö. Ergül and L. Gürel, “Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm,” IEEE Trans. Antennas Propag. 57, 176–187 (2009).
[CrossRef]

J. Song, C.-C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488–1493 (1997).
[CrossRef]

F. G. Mitri, “Electromagnetic wave scattering of a high-order Bessel vortex beam by a dielectric sphere,” IEEE Trans. Antennas Propag. 59, 4375–4379 (2011).
[CrossRef]

Y. Chang and R. F. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag. 25, 789–795 (1977).
[CrossRef]

K. Umashankar, A. Taflove, and S. M. Rao, “Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects,” IEEE Trans. Antennas Propag. 34, 758–766 (1986).
[CrossRef]

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag. 30, 409–418 (1982).
[CrossRef]

J. Acoust. Soc. Am.

P. L. Marston, “Scattering of a Bessel beam by a sphere,” J. Acoust. Soc. Am. 121, 753–758 (2007).
[CrossRef]

J. Appl. Phys.

S. Kozaki, “Scattering of a Gaussian beam by a homogeneous dielectric cylinder,” J. Appl. Phys. 53, 7195–7200 (1982).
[CrossRef]

J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988).
[CrossRef]

J. Electromagn. Waves Appl.

R. F. Harrington, “Boundary integral formulations for homogeneous material bodies,” J. Electromagn. Waves Appl. 3, 1–15 (1989).

J. Opt.

G. Gouesbet, “Scattering of higher-order Gaussian beams by an infinite cylinder,” J. Opt. 28, 45–65 (1997).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Commun.

S. R. Mishra, “A vector wave analysis of a Bessel beam,” Opt. Commun. 85, 159–161 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Electromagn. Res. M

Z. W. Cui, Y. P. Han, Q. Xu, and M. L. Li, “Parallel MOM solution of JMCFIE for scattering by 3-D electrically large dielectric objects,” Prog. Electromagn. Res. M 12, 217–228 (2010).

Radio Sci.

Ö. Ergül and L. Gürel, “Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning,” Radio Sci. 44, RS6001 (2009).
[CrossRef]

T. K. Wu and L. L. Tsai, “Scattering from arbitrarily shaped lossy dielectric bodies of revolution,” Radio Sci. 12, 709–718 (1977).
[CrossRef]

Other

R. X. Li, C. Y. Ding, K. F. Ren, X. E. Han, L. X. Guo, Z. S. Wu, and S. X. Gong, “Scattering of a high-order Bessel beam by a sphere,” 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE, 2012), pp. 833–836.

A. J. Poggio and E. K. Miller, Computer Techniques for Electromagnetics (Pergamon, 1973).

A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, 1957).

R. F. Harrington, Field Computation by Moment Methods (Macmillan, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Geometry of Cartesian coordinates of the beam and particle.

Fig. 2.
Fig. 2.

Geometry of the scattering problem under study.

Fig. 3.
Fig. 3.

Comparison of the DSCSs for a homogeneous spherical dielectric particle obtained from the SIEM and that from the GLMT: (a) E-plane and (b) H-plane.

Fig. 4.
Fig. 4.

Effects of the half-cone angle on the DSCS: (a) E-plane and (b) H-plane.

Fig. 5.
Fig. 5.

Effects of the beam center position on the DSCS: (a) E-plane and (b) H-plane.

Fig. 6.
Fig. 6.

Effects of the incident angles on the DSCS: (a) α, β, γ and (b) β.

Fig. 7.
Fig. 7.

Scattering of an on-axis normally incident Bessel beam by a spheroidal particle: (a) 3D discretized model and (b) DSCS.

Fig. 8.
Fig. 8.

Scattering of a perpendicularity incident Bessel beam by a hexagonal prism particle: (a) Geometry of the particle and (b) DSCS.

Fig. 9.
Fig. 9.

Illustration of a disk-like particle: (a) Cross section of the disk-like model and (b) 3D model.

Fig. 10.
Fig. 10.

Differential scattering cross section for a disk-like particle.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

[xx0yy0zz0]=A[uvw],
A=[cosαsinα0sinαcosα0001][cosβ0sinβ010sinβ0cosβ][cosγsinγ0sinγcosγ0001].
[ExEyEz]=A[EuEvEw],[HxHyHz]=A[HuHvHw].
Einc=x^Ex+y^Ey+z^Ez,
Hinc=x^Hx+y^Hy+z^Hz,
Eu=12E0[(1+kwkkr2u2k2r2)J0(krr)kr(v2u2)k2r3J1(krr)]exp(ikww),
Ev=12E0[2kruvk2r3J1(krr)kr2uvk2r2J0(krr)]exp(ikww),
Ew=12E0[iukr(1+kwk)krJ1(krr)]exp(ikww),
Hu=12H0[2kruvk2r3J1(krr)kr2uvk2r2J0(krr)]exp(ikww),
Hv=12H0[(1+kwkkr2v2k2r2)J0(krr)kr(u2v2)k2r3J1(krr)]exp(ikww),
Hw=12H0[ivkr(1+kwk)krJ1(krr)]exp(ikww),
EFIE(1):|Z1L1(J)K1(M)=Einc|tan
MFIE(1):|L1(M)+Z1K1(J)=Z1Hinc|tan,
L1(X)=ik1S[X(r)+1k12(·X(r))]G1(r,r)dS,
K1(X)=0.5X(r)×n^1+P·V·SG1(r,r)×X(r)dS,
G1(r,r)=eik1|rr|4π|rr|,
EFIE(2):|Z2L2(J)K2(M)=0|tan,
MFIE(2):|L2(M)+Z2K2(J)=0|tan,
JCFIE(l):aEFIE(l)+bZ1n^l×MFIE(l),
MCFIE(l):aZ1MFIE(l)bn^l×EFIE(l),
JCFIE(1)+JCFIE(2),
MCFIE(1)+MCFIE(2).
J=n=1NJnfn,M=n=1NMnfn,
[ZJJZJMZMJZMM]{JM}={bEbH},
Efarsca(r)=ik1eik1r4πrS[Z1(θ^θ^+ϕ^ϕ^)·J(r)(θ^ϕ^ϕ^θ^)·M(r)]eik1k^·rdS,
Hfarsca(r)=ik1eik1r4πrS[(ϕ^θ^θ^ϕ^)·J(r)+1Z1(θ^θ^+ϕ^ϕ^)·M(r)]eik1k^·rdS,
σ=limr4πr2|Efarsca|2|E0|2=limr4πr2|Hfarsca|2|H0|2.
D(x)=[1(x/R0)2]1/2[C0+C2(x/R0)2+C4(x/R0)4],

Metrics