Abstract

For a coronagraph to detect faint exoplanets, it will require focal plane wavefront control techniques to continue reaching smaller angular separations and higher contrast levels. These correction algorithms are iterative and the control methods need an estimate of the electric field at the science camera, which requires nearly all of the images taken for the correction. The best way to make such algorithms the least disruptive to science exposures is to reduce the number required to estimate the field. We demonstrate a Kalman filter estimator that uses prior knowledge to create the estimate of the electric field, dramatically reducing the number of exposures required to estimate the image plane electric field while stabilizing the suppression against poor signal-to-noise. In addition to a significant reduction in exposures, we discuss the relative merit of this algorithm to estimation schemes that do not incorporate prior state estimate history, particularly in regard to estimate error and covariance. Ultimately the filter will lead to an adaptive algorithm which can estimate physical parameters in the laboratory for robustness to variance in the optical train.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription