X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

X. Ma, G. R. Arce, and Y. Li, “Optimal 3D phase-shifting masks in partially coherent illumination,” Appl. Opt. 50, 5567–5576 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express 17, 5783–5793 (2009).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20126–20141 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

X. Ma and G. R. Arce, Computational Lithography, 1st ed.(Wiley, 2010).

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 7640–7674 (2010).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 7640–7674 (2010).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in doe modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 7640–7675 (2010).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

J. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill Science, 1996).

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in doe modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 7640–7675 (2010).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 7640–7674 (2010).

[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 7640–7674 (2010).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in doe modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 7640–7675 (2010).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

N. Jia and E. Y. Lam, “Pixelated source mask optimization for process robustness in optical lithography,” Opt. Express 19, 19384–19398 (2011).

[CrossRef]

Y. Shen, N. Wong, and E. Y. Lam, “Level-set-based inverse lithography for photomask synthesis,” Opt. Express 17, 23690–23701 (2009).

[CrossRef]

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifing masks in optical projection lithography,” Opt. Express 16, 14746–14760 (2008).

[CrossRef]

N. Jia and E. Y. Lam, “Performance analysis of pixelated source-mask optimization for optical microlithography,” in Proceedings of IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC) (IEEE, 2010).

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 1828–1836(1982).

[CrossRef]

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).

[CrossRef]

X. Ma, G. R. Arce, and Y. Li, “Optimal 3D phase-shifting masks in partially coherent illumination,” Appl. Opt. 50, 5567–5576 (2011).

[CrossRef]

X. Ma and Y. Li, “Resolution enhancement optimization methods in optical lithography with improved manufacturability,” J. Microlith. Microfab. Microsyst. 10(2), 023009 (2011).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 7640–7674 (2010).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

X. Ma, Y. Li, and L. Dong, “Mask optimization approaches in optical lithography based on a vector imaging model,” J. Opt. Soc. Am. A 29, 1300–1312 (2012).

[CrossRef]

X. Ma, G. R. Arce, and Y. Li, “Optimal 3D phase-shifting masks in partially coherent illumination,” Appl. Opt. 50, 5567–5576 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based OPC optimization based on conjugate gradients,” Opt. Express 19, 2165–2180 (2011).

[CrossRef]

X. Ma and Y. Li, “Resolution enhancement optimization methods in optical lithography with improved manufacturability,” J. Microlith. Microfab. Microsyst. 10(2), 023009 (2011).

[CrossRef]

X. Ma and G. R. Arce, “Pixel-based simultaneous source and mask optimization for resolution enhancement in optical lithography,” Opt. Express 17, 5783–5793 (2009).

[CrossRef]

X. Ma and G. R. Arce, “Binary mask optimization for inverse lithography with partially coherent illumination,” J. Opt. Soc. Am. A 25, 2960–2970 (2008).

[CrossRef]

X. Ma and G. R. Arce, “PSM design for inverse lithography with partially coherent illumination,” Opt. Express 16, 20126–20141 (2008).

[CrossRef]

X. Ma and G. R. Arce, “Generalized inverse lithography methods for phase-shifting mask design,” Opt. Express 15, 15066–15079 (2007).

[CrossRef]

X. Ma and G. R. Arce, Computational Lithography, 1st ed.(Wiley, 2010).

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 7640–7674 (2010).

[CrossRef]

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

Y. V. Miklyaev, W. Imgrunt, V. S. Pavelyev, D. G. Kachalov, T. Bizjak, L. Aschke, and V. N. Lissotschenko, “Novel continuously shaped diffractive optical elements enable high-efficiency beam shaping,” Proc. SPIE 7640, 7640–7674 (2010).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

A. Poonawala and P. Milanfar, “Fast and low-complexity mask design in optical microlithography—an inverse imaging problem,” IEEE Trans. Image Process. 16, 774–788 (2007).

[CrossRef]

A. Poonawala and P. Milanfar, “OPC and PSM design using inverse lithography: a non-linear optimization approach,” Proc. SPIE 6154, 1159–1172 (2006).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

[CrossRef]

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

S. Sherif, B. Saleh, and R. Leone, “Binary image synthesis using mixed integer programming,” IEEE Trans. Image Process. 4, 1252–1257 (1995).

[CrossRef]

S. Robert, X. Shi, and L. David, “Simultaneous source mask optimization (SMO),” Proc. SPIE 5853, 180–193 (2005).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 1828–1836(1982).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

C. Progler, W. Conley, B. Socha, and Y. Ham, “Layout and source dependent phase mask transmission tuning,” Proc. SPIE 5454, 315–326 (2005).

[CrossRef]

S. Hsu, L. Chen, Z. Li, S. Park, K. Gronlund, H. Liu, N. Callan, R. Socha, and S. Hansen, “An innovative source-mask co-optimization (SMO) method for extending low k1 imaging,” Proc. SPIE 7140, 714010 (2008).

[CrossRef]

T. V. Pistor, A. R. Neureuther, and R. J. Socha, “Modeling oblique incidence effects in photomasks,” Proc. SPIE 4000, 228–237 (2000).

[CrossRef]

J. T. Carriere, J. Stack, A. D. Kathman, and M. D. Himel, “Advances in doe modeling and optical performance for SMO applications in immersion lithography at the 32 nm node and beyond,” Proc. SPIE 7640, 7640–7675 (2010).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

D. Peng, P. Hu, V. Tolani, and T. Dam, “Toward a consistent and accurate approach to modeling projection optics,” Proc. SPIE 7640, 76402Y (2010).

[CrossRef]

M. Totzeck, P. Graüpner, T. Heil, A. Göhnermeier, O. Dittmann, D. Krähmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).

[CrossRef]

M. D. Levenson, N. S. Viswanathan, and R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron. Devices ED-29, 1828–1836(1982).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).

[CrossRef]

S. H. Chan, A. K. Wong, and E. Y. Lam, “Initialization for robust inverse synthesis of phase-shifing masks in optical projection lithography,” Opt. Express 16, 14746–14760 (2008).

[CrossRef]

A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. Molless, R. N. Singh, and A. K. Wong, “Optimum mask and source patterns to print a given shape,” J. Microlith. Microfab. Microsyst. 1, 13–30 (2002).

[CrossRef]

A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE, 2001).

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).

[CrossRef]

Y. Liu and A. Zakhor, “Binary and phase shifting mask design for optical lithography,” IEEE Trans. Semicond. Manuf. 5, 138–152 (1992).

[CrossRef]

Y. Peng, J. Zhang, Y. Wang, and Z. Yu, “Gradient-based source and mask optimization in optical lithography,” IEEE Trans. Image Process. 20, 2856–2864 (2011).

[CrossRef]

K. Lai, A. E. Rosenbluth, S. Bagheri, J. Hoffnagle, K. Tian, D. Melville, J. T. Azpiroz, M. Fakhry, Y. Kim, S. Halle, G. McIntyre, A. Wagner, G. Burr, M. Burkhardt, D. Corliss, E. Gallagher, T. Faure, M. Hibbs, D. Flagello, J. Zimmermann, B. Kneer, F. Rohmund, F. Hartung, C. Hennerkes, M. Maul, R. Kazinczi, A. Engelen, R. Carpaij, R. Groenendijk, J. Hageman, and C. Russ, “Experimental result and simulation analysis for the use of pixelated illumination from source mask optimization for 22 nm logic lithography process,” Proc. SPIE 7274, 72740A (2009).

[CrossRef]