Abstract

Non-Gaussian speckle generated by the coherent superposition of a small number of random complex amplitudes can be physically realized through the elastic scattering of incident monochromatic radiation with a thin, nondepolarizing random phase screen. Under conditions of Gaussian-distributed phase fluctuations whose rms is much greater than 2π rad, whose lateral autocorrelation is Gaussian in shape with a correlation length z greater than twice the wavelength of the illumination, and for which the ratio of these two is less than 0.05, the Kirchhoff diffraction integral approximation can be applied. A series solution for the first and second intensity moments for the far field is derived and presented. The steepest-descents solution given by Jakeman and McWhirter [ Appl. Phys. B 26, 125 ( 1981)] converges to the given series solution for the mean intensity. With improved experimental technique, measurements of the normalized second moment are shown to agree with Jakeman and McWhirter’s approximation over a wide range of illuminated scattering centers. A computer simulation of this experiment for phase objects of up to 50-rad rms phase deviations is shown to agree well with predictions of the mean intensity. The second moments agree well in the low- and high-illumination limits but systematically overestimate the normalized second moment near the peak of each curve.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription