Abstract

The temporal behavior of stellar speckle patterns is statistically analyzed. The time-only power spectrum is shown to be the sum of two exponentially decreasing functions defining two characteristic time constants. The corresponding correlation is the sum of two Lorentzian functions. This is consistent with the first-order expansion of the power spectrum deduced from the multiple-layer model for atmospheric turbulence. However, this model fails to account for the experimental data that show a strong correlation between the spatial structure of a speckle pattern and its temporal behavior. This leads to the introduction of a new empirical model, called the randomly jittered speckle pattern model, which gives a preponderant place to image motion. The speckle lifetime then appears to be substantially longer than the corresponding measured time constant. As a consequence, a preliminary compensation of the image motion appears to be particularly interesting in speckle interferometry or active optics experiments.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription