## Abstract

A convenient expression describing the location of Fresnel diffraction patterns when a diffracted spherical wave is focused by a lens is given. Experimental results confirm the predicted positions of 26 axial extrema corresponding to integer numbers of Fresnel half-period zones. Experimental radial intensity profiles are presented for some of these positions.

© 1986 Optical Society of America

Full Article |

PDF Article
### Equations (7)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$F={a}^{2}/\mathrm{\lambda}l.$$
(2)
$$\mathrm{\Delta}=sPQm-sOm,$$
(4)
$$\begin{array}{l}PQm=wOm.\\ \mathrm{\Delta}=sx+wOm-sOm=wx.\end{array}$$
(5)
$$\mathrm{\Delta}=\frac{{a}^{2}}{2{R}_{0}}-\frac{{a}^{2}}{2({L}_{2}-{L}_{0})}.$$
(6)
$$F=\frac{{a}^{2}}{\mathrm{\lambda}}\left[\frac{1}{{L}_{0}-\frac{{L}_{1}f}{{L}_{1}-f}}+\frac{1}{{R}_{0}}\right].$$
(7)
$$F\to \frac{{a}^{2}}{\mathrm{\lambda}}\left[\frac{1}{{L}_{0}-f}+\frac{1}{{R}_{0}}\right].$$