Abstract

In heterodyne communication systems and for some fiber-optic sensors the polarization-holding properties of polarization-maintaining single-mode fibers determine crucially the performance of the whole system. The performance is deteriorated mainly by mode coupling caused by fiber imperfections and a little by the anisotropy of the Rayleigh scattering process. The latter effect, however, contributes considerably to the depolarization of the backscattered signal. Thus in polarization-sensitive optical time-domain reflectometry (OTDR) measurements the polarization-holding capabilities of a fiber link can be misinterpreted. An OTDR setup that permits separate measurements for both effects is outlined, and experimental results for the amount of anisotropic scattering is given.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
    [CrossRef]
  2. S. C. Rashleigh, W. K. Burns, M. J. Marrone, R. Ulrich, “Characterization of polarization-holding in birefringent single-mode fibers,” in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), pp. 201–207.
    [CrossRef]
  3. T. Katsuyama, H. Matsumura, T. Suganuma, “Low loss single-polarization fiber,” Electron. Lett. 17, 473–474 (1981).
    [CrossRef]
  4. A. W. Snyder, F. Rühl, “Single-mode, single-polarization fibers made of birefringent material,”J. Opt. Soc. Am. 73, 1165–1174 (1983).
    [CrossRef]
  5. M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single polarization operation of highly birefringent bow-tie optical fibers,” Electron. Lett. 19, 246–247 (1983).
    [CrossRef]
  6. E. Brinkmeyer, W. Eickhoff, “Ultimate limit of polarization holding in single-mode fibers,” Electron. Lett. 19, 996–997 (1983).
    [CrossRef]
  7. M. Nakazawa, N. Shibata, M. Tokuda, Y. Negishi, “Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers,” J. Opt. Soc. Am. A 1, 285–292 (1984).
    [CrossRef]
  8. A. H. Hartog, D. N. Payne, A. J. Conduit, “Polarization optical time-domain reflectometry,” Sixth European Conference on Optical Communication, York, England, September 16–19, 1980.
  9. W. Eickhoff, “Measurement of the spatial distribution of random polarization coupling in single-mode fibers” presented at the Ninth European Conference on Optical Communication, Geneva, October 23–26, 1983.
  10. K. Takada, J. Noda, Y. Sasaki, “Measurement of spatial distributions of mode coupling in polarization-maintaining fibers,” Electron. Lett. 20, 119–121 (1984).
    [CrossRef]
  11. E. Brinkmeyer, “Forward-backward transmission in birefringent single-mode fibers: interpretation of polarization-sensitive measurements,” Opt. Lett. 6, 575–577 (1981).
    [CrossRef] [PubMed]
  12. E. Brinkmeyer, “Analysis of the backscattering method for single-mode optical fibers,”J. Opt. Soc. Am. 70, 1010–1012 (1980).
    [CrossRef]
  13. R. S. Krishnan, “Scattering of light in optical glasses,” Proc. Indian Acad. Sci. A 3, 211–220 (1936); J. P. Dakin, W. A. Gambling: “Theory of scattering from the core of a multimode fibre waveguide,” Opt. Commun. 10, 195–199 (1974).
    [CrossRef]
  14. R. C. Youngquist, J. L. Brooks, H. J. Shaw, “Birefringent-fiber polarization coupler,” Opt. Lett. 8, 656–658 (1983).
    [CrossRef] [PubMed]
  15. P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20, 30–32 (1984).
    [CrossRef]
  16. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975).
    [CrossRef]

1984 (3)

M. Nakazawa, N. Shibata, M. Tokuda, Y. Negishi, “Measurements of polarization mode couplings along polarization-maintaining single-mode optical fibers,” J. Opt. Soc. Am. A 1, 285–292 (1984).
[CrossRef]

K. Takada, J. Noda, Y. Sasaki, “Measurement of spatial distributions of mode coupling in polarization-maintaining fibers,” Electron. Lett. 20, 119–121 (1984).
[CrossRef]

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20, 30–32 (1984).
[CrossRef]

1983 (4)

R. C. Youngquist, J. L. Brooks, H. J. Shaw, “Birefringent-fiber polarization coupler,” Opt. Lett. 8, 656–658 (1983).
[CrossRef] [PubMed]

A. W. Snyder, F. Rühl, “Single-mode, single-polarization fibers made of birefringent material,”J. Opt. Soc. Am. 73, 1165–1174 (1983).
[CrossRef]

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single polarization operation of highly birefringent bow-tie optical fibers,” Electron. Lett. 19, 246–247 (1983).
[CrossRef]

E. Brinkmeyer, W. Eickhoff, “Ultimate limit of polarization holding in single-mode fibers,” Electron. Lett. 19, 996–997 (1983).
[CrossRef]

1981 (3)

I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[CrossRef]

T. Katsuyama, H. Matsumura, T. Suganuma, “Low loss single-polarization fiber,” Electron. Lett. 17, 473–474 (1981).
[CrossRef]

E. Brinkmeyer, “Forward-backward transmission in birefringent single-mode fibers: interpretation of polarization-sensitive measurements,” Opt. Lett. 6, 575–577 (1981).
[CrossRef] [PubMed]

1980 (1)

1936 (1)

R. S. Krishnan, “Scattering of light in optical glasses,” Proc. Indian Acad. Sci. A 3, 211–220 (1936); J. P. Dakin, W. A. Gambling: “Theory of scattering from the core of a multimode fibre waveguide,” Opt. Commun. 10, 195–199 (1974).
[CrossRef]

Birch, R. D.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single polarization operation of highly birefringent bow-tie optical fibers,” Electron. Lett. 19, 246–247 (1983).
[CrossRef]

Brinkmeyer, E.

Brooks, J. L.

Burns, W. K.

S. C. Rashleigh, W. K. Burns, M. J. Marrone, R. Ulrich, “Characterization of polarization-holding in birefringent single-mode fibers,” in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), pp. 201–207.
[CrossRef]

Conduit, A. J.

A. H. Hartog, D. N. Payne, A. J. Conduit, “Polarization optical time-domain reflectometry,” Sixth European Conference on Optical Communication, York, England, September 16–19, 1980.

Eickhoff, W.

E. Brinkmeyer, W. Eickhoff, “Ultimate limit of polarization holding in single-mode fibers,” Electron. Lett. 19, 996–997 (1983).
[CrossRef]

W. Eickhoff, “Measurement of the spatial distribution of random polarization coupling in single-mode fibers” presented at the Ninth European Conference on Optical Communication, Geneva, October 23–26, 1983.

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975).
[CrossRef]

Hartog, A. H.

A. H. Hartog, D. N. Payne, A. J. Conduit, “Polarization optical time-domain reflectometry,” Sixth European Conference on Optical Communication, York, England, September 16–19, 1980.

Healey, P.

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20, 30–32 (1984).
[CrossRef]

Kaminov, I. P.

I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[CrossRef]

Katsuyama, T.

T. Katsuyama, H. Matsumura, T. Suganuma, “Low loss single-polarization fiber,” Electron. Lett. 17, 473–474 (1981).
[CrossRef]

Krishnan, R. S.

R. S. Krishnan, “Scattering of light in optical glasses,” Proc. Indian Acad. Sci. A 3, 211–220 (1936); J. P. Dakin, W. A. Gambling: “Theory of scattering from the core of a multimode fibre waveguide,” Opt. Commun. 10, 195–199 (1974).
[CrossRef]

Marrone, M. J.

S. C. Rashleigh, W. K. Burns, M. J. Marrone, R. Ulrich, “Characterization of polarization-holding in birefringent single-mode fibers,” in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), pp. 201–207.
[CrossRef]

Matsumura, H.

T. Katsuyama, H. Matsumura, T. Suganuma, “Low loss single-polarization fiber,” Electron. Lett. 17, 473–474 (1981).
[CrossRef]

Nakazawa, M.

Negishi, Y.

Noda, J.

K. Takada, J. Noda, Y. Sasaki, “Measurement of spatial distributions of mode coupling in polarization-maintaining fibers,” Electron. Lett. 20, 119–121 (1984).
[CrossRef]

Payne, D. N.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single polarization operation of highly birefringent bow-tie optical fibers,” Electron. Lett. 19, 246–247 (1983).
[CrossRef]

A. H. Hartog, D. N. Payne, A. J. Conduit, “Polarization optical time-domain reflectometry,” Sixth European Conference on Optical Communication, York, England, September 16–19, 1980.

Rashleigh, S. C.

S. C. Rashleigh, W. K. Burns, M. J. Marrone, R. Ulrich, “Characterization of polarization-holding in birefringent single-mode fibers,” in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), pp. 201–207.
[CrossRef]

Rühl, F.

Sasaki, Y.

K. Takada, J. Noda, Y. Sasaki, “Measurement of spatial distributions of mode coupling in polarization-maintaining fibers,” Electron. Lett. 20, 119–121 (1984).
[CrossRef]

Shaw, H. J.

Shibata, N.

Snyder, A. W.

Suganuma, T.

T. Katsuyama, H. Matsumura, T. Suganuma, “Low loss single-polarization fiber,” Electron. Lett. 17, 473–474 (1981).
[CrossRef]

Takada, K.

K. Takada, J. Noda, Y. Sasaki, “Measurement of spatial distributions of mode coupling in polarization-maintaining fibers,” Electron. Lett. 20, 119–121 (1984).
[CrossRef]

Tarbox, E. J.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single polarization operation of highly birefringent bow-tie optical fibers,” Electron. Lett. 19, 246–247 (1983).
[CrossRef]

Tokuda, M.

Ulrich, R.

S. C. Rashleigh, W. K. Burns, M. J. Marrone, R. Ulrich, “Characterization of polarization-holding in birefringent single-mode fibers,” in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), pp. 201–207.
[CrossRef]

Varnham, M. P.

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single polarization operation of highly birefringent bow-tie optical fibers,” Electron. Lett. 19, 246–247 (1983).
[CrossRef]

Youngquist, R. C.

Electron. Lett. (5)

T. Katsuyama, H. Matsumura, T. Suganuma, “Low loss single-polarization fiber,” Electron. Lett. 17, 473–474 (1981).
[CrossRef]

M. P. Varnham, D. N. Payne, R. D. Birch, E. J. Tarbox, “Single polarization operation of highly birefringent bow-tie optical fibers,” Electron. Lett. 19, 246–247 (1983).
[CrossRef]

E. Brinkmeyer, W. Eickhoff, “Ultimate limit of polarization holding in single-mode fibers,” Electron. Lett. 19, 996–997 (1983).
[CrossRef]

K. Takada, J. Noda, Y. Sasaki, “Measurement of spatial distributions of mode coupling in polarization-maintaining fibers,” Electron. Lett. 20, 119–121 (1984).
[CrossRef]

P. Healey, “Fading in heterodyne OTDR,” Electron. Lett. 20, 30–32 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. P. Kaminov, “Polarization in optical fibers,” IEEE J. Quantum Electron. 17, 15–22 (1981).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Proc. Indian Acad. Sci. A (1)

R. S. Krishnan, “Scattering of light in optical glasses,” Proc. Indian Acad. Sci. A 3, 211–220 (1936); J. P. Dakin, W. A. Gambling: “Theory of scattering from the core of a multimode fibre waveguide,” Opt. Commun. 10, 195–199 (1974).
[CrossRef]

Other (4)

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975).
[CrossRef]

A. H. Hartog, D. N. Payne, A. J. Conduit, “Polarization optical time-domain reflectometry,” Sixth European Conference on Optical Communication, York, England, September 16–19, 1980.

W. Eickhoff, “Measurement of the spatial distribution of random polarization coupling in single-mode fibers” presented at the Ninth European Conference on Optical Communication, Geneva, October 23–26, 1983.

S. C. Rashleigh, W. K. Burns, M. J. Marrone, R. Ulrich, “Characterization of polarization-holding in birefringent single-mode fibers,” in Fiber-Optic Rotation Sensors, S. Ezekiel, H. J. Arditty, eds. (Springer-Verlag, Berlin, 1982), pp. 201–207.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Polarization-sensitive OTDR with heterodyne detection.

Fig. 2
Fig. 2

Sketch for elucidation of measurement procedure.

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

( E i x E i y )
( Δ p x Δ p y )
( Δ p x Δ p y ) = 0 Δ ( E i x E i y ) ,
( E s x E s y ) ~ ( Δ p x Δ p y ) .
P s - P s P s + P s = ( P x - P y P x + P y ) 2 ,
( Δ p x Δ p y Δ p z ) = 0 ( Δ i k ) ( E i x 0 0 ) .
P s P s = P s y P s x = ( Δ y x Δ x x ) 2 .
( E x ( z 0 ) E y ( z 0 ) ) = T ( E x ( 0 ) E y ( 0 ) ) ,
T ( z 0 ) ~ [ exp [ - j Δ Ψ ( z 0 ) ] - χ * ( z 0 ) exp [ j Δ Ψ ( z 0 ) ] χ ( z 0 ) exp [ - j Δ Ψ ( z 0 ) ] exp [ j Δ Ψ ( z 0 ) ] ]
( E x ( 0 ) E y ( 0 ) ) = ( 1 0 ) ,
( E x ( z 0 ) E y ( z 0 ) ) ~ exp [ - j Δ Ψ ( z 0 ) ] ( 1 χ ( z 0 ) ) .
χ ( z 0 ) 2 = P / P
P s P s = 2 χ z 0 ) 2 + K [ 1 - 2 ( χ ( z 0 ) 2 - χ ( z 0 ) 2 2 ) ] 1 + 4 K χ ( z 0 ) 2 + 2 χ ( z 0 ) 2 2 .
P s / P s 2 χ ( z 0 ) 2 + K .
( P s P s ) I f 1 = 2 χ A 2 + K ( B ) .
( P s P s ) II f 2 = 2 χ c 2 + K ( B ) ,
P y P x = χ 1 2 + χ 2 2 1 + χ 1 2 χ 2 2 .
h L = P ( z = L ) P ( z = L ) f 3 = χ A 2 + χ C 2 .
K ( B ) = f 1 + f 2 2 - f 3 .
( d P s d P s ) = α ( cos 2 2 ( z ) sin 2 2 ( z ) ) d z ,
( E x ( z 0 ) E y ( z 0 ) ) = ( P x ( z 0 ) exp [ j Ψ x ( z 0 ) ] P y ( z 0 ) exp [ j Ψ y ( z 0 ) ] ) ,
sin 2 ( z 0 ) = γ sin Δ Ψ ( z 0 ) ,
sin 2 ( z ) = γ sin [ Δ β z + Δ Ψ ( z 0 ) ] .
( d P s d P s ) = α d z ( 1 - γ 2 sin 2 [ Δ β z + Δ Ψ ( z 0 ) ] γ 2 sin 2 [ Δ β z + Δ Ψ ( z 0 ) ] ) .
( P P ) = α Δ z ( 1 - γ 2 / 2 γ 2 / 2 ) ,
P s - P s P s + P s = 1 - γ 2 = { [ P x ( z 0 ) - P y ( z 0 ) ] / [ P x ( z 0 ) + P y ( z 0 ) ] } 2 .
T ( z ) = [ exp [ j β x ( z - z 0 ) ] 0 0 exp [ j β y ( z - z 0 ) ] ] T ( z 0 ) .
( d E s x d E s y ) = T t ( z ) [ r x x r x y r x y r y y ] T ( z ) ( E x ( 0 ) E y ( 0 ) ) d z ,
( P s P s ) = ( R x x + 4 χ ( z 0 ) 2 R x y + χ ( z 0 ) 4 R y y χ ( z 0 ) 2 ( R x x + R y y ) + ( 1 - χ ( z 0 ) 2 ) 2 R x y ) ,
( R x x R x y R y y ) = | z 0 z 0 + Δ z ( r x x exp [ j 2 β x ( z - z 0 ) ] r x y exp [ j ( β x + β y ) ( z - z 0 ) ] r y y exp [ j 2 β y ( z - z 0 ) ] ) d z | 2 .
P s P s = 2 χ ( z 0 ) 2 + ( 1 - χ ( z 0 ) 2 ) 2 K 1 + 4 K χ ( z 0 ) 2 + χ ( z 0 ) 4 ,
χ ( z 0 ) 4 = 2 χ ( z 0 ) 2 2 .
P s P s = 2 χ ( z 0 ) 2 + K [ 1 - 2 ( χ ( z 0 ) 2 - χ ( z 0 ) 2 2 ) ] 1 + 4 K χ ( z 0 ) 2 + 2 χ ( z 0 ) 2 2 .
( E x ( L ) E y ( L ) ) ~ exp [ - j ( Δ Ψ 1 + Δ Ψ 2 ) ] ( 1 - χ 1 χ 2 * exp [ j 2 Δ Ψ 2 ] χ 2 + χ 1 exp [ j 2 Δ Ψ 2 ] ) .
P y P x = χ 1 2 + χ 2 2 1 + χ 1 2 χ 2 2 .

Metrics