Abstract

The problem of optically estimating an object’s position by using a charge-coupled device (CCD) array composed of square pixels Δx on a side is analyzed. The object’s image spot at the CCD is assumed to have a Gaussian intensity profile with a 1/e point at a radial distance of 2σs from the peak, and the CCD noise is modeled as Poisson-distributed, dark-current shot noise. A two-dimensional Cramér–Rao bound is developed and used to determine a lower limit for the mean-squared error of any unbiased position estimator, and the maximum-likelihood estimator is also derived. For the one-dimensional position-estimation problem the lower bound is shown to be minimum for a pixel-to-image size ratio Δx/σs of between 1 and 2 over a wide range of signal-to-noise ratios. Similarly for the two-dimensional problem, the optimum ratio is shown to lie between 1.5 and 2.5. As is customary in direct detection systems, it is also observed that the lower bound is a function of both the signal power and noise power separately and not just of their ratio. Finally, the maximum-likelihood estimator is shown to be independent of the signal and noise powers at high signal-to-noise ratios.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription