Abstract

A new method of measuring simultaneous contrast, or chromatic induction, is introduced and used to test the hypotheses that induction results from either multiplicative or subtractive interaction of either (1) like receptors or (2) like second-stage, opponent mechanisms. Predictions derived from these hypotheses do not predict the outcome of the experiments as well as the traditional notion that induced colors are in the direction complementary to the inducing color with respect to the test color. We conclude that simultaneous contrast is a consequence of interaction within higher-level chromatic mechanisms.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. B. Mandler, J. Krauskopf, “Nulling methods for measuring simultaneous contrast,” Invest. Ophthmol. Vis. Sci. Suppl. 25, 233 (1984); M. E. McCourt, “A spatial frequency dependent grating-induction effect,” Vision Res. 22, 119–134 (1982).
    [Crossref] [PubMed]
  2. J. Krauskopf, D. R. Williams, D. M. Heeley, “The cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
    [Crossref]
  3. A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).
  4. J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
    [Crossref] [PubMed]
  5. R. M. Evans, An Introduction to Color (Wiley, New York, 1948); M. Alpern, “Relation between brightness and color contrast,” J. Opt. Soc. Am. 54, 1491–1492 (1964).
    [Crossref]
  6. C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982); S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980); D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964); S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
    [Crossref] [PubMed]
  7. J. Larimer, D. Krantz, C. Cicerone, “Opponent-process additivity—I. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975); J. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
    [Crossref] [PubMed]
  8. S. Burns, A. Elsner, J. Pokorny, V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
    [Crossref] [PubMed]
  9. J. Pokorny, V. Smith, S. Burns, A. Elsner, Q. Zaidi, “Modeling blue–yellow opponency,” presented at the Fourth International Congress of the International Colour Association, 1981.
  10. P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in striate cortex of macaque,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 8 (1985).

1986 (1)

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

1985 (1)

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in striate cortex of macaque,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 8 (1985).

1984 (3)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

S. Burns, A. Elsner, J. Pokorny, V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

M. B. Mandler, J. Krauskopf, “Nulling methods for measuring simultaneous contrast,” Invest. Ophthmol. Vis. Sci. Suppl. 25, 233 (1984); M. E. McCourt, “A spatial frequency dependent grating-induction effect,” Vision Res. 22, 119–134 (1982).
[Crossref] [PubMed]

1982 (2)

J. Krauskopf, D. R. Williams, D. M. Heeley, “The cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982); S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980); D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964); S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

1975 (1)

J. Larimer, D. Krantz, C. Cicerone, “Opponent-process additivity—I. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975); J. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

Burns, S.

S. Burns, A. Elsner, J. Pokorny, V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

J. Pokorny, V. Smith, S. Burns, A. Elsner, Q. Zaidi, “Modeling blue–yellow opponency,” presented at the Fourth International Congress of the International Colour Association, 1981.

Cicerone, C.

J. Larimer, D. Krantz, C. Cicerone, “Opponent-process additivity—I. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975); J. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

Cowan, W. B.

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982); S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980); D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964); S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

Derrington, A. M.

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Elsner, A.

S. Burns, A. Elsner, J. Pokorny, V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

J. Pokorny, V. Smith, S. Burns, A. Elsner, Q. Zaidi, “Modeling blue–yellow opponency,” presented at the Fourth International Congress of the International Colour Association, 1981.

Evans, R. M.

R. M. Evans, An Introduction to Color (Wiley, New York, 1948); M. Alpern, “Relation between brightness and color contrast,” J. Opt. Soc. Am. 54, 1491–1492 (1964).
[Crossref]

Heeley, D. M.

J. Krauskopf, D. R. Williams, D. M. Heeley, “The cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

Krantz, D.

J. Larimer, D. Krantz, C. Cicerone, “Opponent-process additivity—I. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975); J. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

Krauskopf, J.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in striate cortex of macaque,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 8 (1985).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

M. B. Mandler, J. Krauskopf, “Nulling methods for measuring simultaneous contrast,” Invest. Ophthmol. Vis. Sci. Suppl. 25, 233 (1984); M. E. McCourt, “A spatial frequency dependent grating-induction effect,” Vision Res. 22, 119–134 (1982).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. M. Heeley, “The cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

Larimer, J.

J. Larimer, D. Krantz, C. Cicerone, “Opponent-process additivity—I. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975); J. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

Lennie, P.

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in striate cortex of macaque,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 8 (1985).

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

M. B. Mandler, J. Krauskopf, “Nulling methods for measuring simultaneous contrast,” Invest. Ophthmol. Vis. Sci. Suppl. 25, 233 (1984); M. E. McCourt, “A spatial frequency dependent grating-induction effect,” Vision Res. 22, 119–134 (1982).
[Crossref] [PubMed]

Pokorny, J.

S. Burns, A. Elsner, J. Pokorny, V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

J. Pokorny, V. Smith, S. Burns, A. Elsner, Q. Zaidi, “Modeling blue–yellow opponency,” presented at the Fourth International Congress of the International Colour Association, 1981.

Sclar, G.

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in striate cortex of macaque,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 8 (1985).

Smith, V.

S. Burns, A. Elsner, J. Pokorny, V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

J. Pokorny, V. Smith, S. Burns, A. Elsner, Q. Zaidi, “Modeling blue–yellow opponency,” presented at the Fourth International Congress of the International Colour Association, 1981.

Ware, C.

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982); S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980); D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964); S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. M. Heeley, “The cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

Zaidi, Q.

J. Pokorny, V. Smith, S. Burns, A. Elsner, Q. Zaidi, “Modeling blue–yellow opponency,” presented at the Fourth International Congress of the International Colour Association, 1981.

Invest. Ophthalmol. Vis. Sci. Suppl. (1)

P. Lennie, G. Sclar, J. Krauskopf, “Chromatic sensitivities of neurons in striate cortex of macaque,” Invest. Ophthalmol. Vis. Sci. Suppl. 26, 8 (1985).

Invest. Ophthmol. Vis. Sci. Suppl. (1)

M. B. Mandler, J. Krauskopf, “Nulling methods for measuring simultaneous contrast,” Invest. Ophthmol. Vis. Sci. Suppl. 25, 233 (1984); M. E. McCourt, “A spatial frequency dependent grating-induction effect,” Vision Res. 22, 119–134 (1982).
[Crossref] [PubMed]

J. Physiol. (London) (1)

A. M. Derrington, J. Krauskopf, P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241–265 (1984).

Vision Res. (5)

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, D. M. Heeley, “The cardinal directions of color space,” Vision Res. 22, 1123–1131 (1982).
[Crossref]

C. Ware, W. B. Cowan, “Changes in perceived color due to chromatic interactions,” Vision Res. 22, 1353–1362 (1982); S. L. Guth, R. W. Massof, T. Benzschawel, “Vector model for normal and dichromatic color vision,” J. Opt. Soc. Am. 70, 197–212 (1980); D. Jameson, L. M. Hurvich, “Theory of brightness and color contrast in human vision,” Vision Res. 4, 135–154 (1964); S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

J. Larimer, D. Krantz, C. Cicerone, “Opponent-process additivity—I. Yellow/blue equilibria and nonlinear models,” Vision Res. 15, 723–731 (1975); J. Werner, B. R. Wooten, “Opponent chromatic mechanisms: relation to photopigments and hue naming,” J. Opt. Soc. Am. 69, 422–434 (1979).
[Crossref] [PubMed]

S. Burns, A. Elsner, J. Pokorny, V. Smith, “The Abney effect: chromaticity coordinates of unique and other constant hues,” Vision Res. 24, 479–489 (1984).
[Crossref] [PubMed]

Other (2)

J. Pokorny, V. Smith, S. Burns, A. Elsner, Q. Zaidi, “Modeling blue–yellow opponency,” presented at the Fourth International Congress of the International Colour Association, 1981.

R. M. Evans, An Introduction to Color (Wiley, New York, 1948); M. Alpern, “Relation between brightness and color contrast,” J. Opt. Soc. Am. 54, 1491–1492 (1964).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Basic measurement technique. On the left, I indicates the inducing stimulus, T the test stimulus. On the right the solid line marked INDUCING depicts the variation in time of the color of the inducing annulus. The dashed line marked INDUCED depicts the modulated appearance of the test disk when it is, in fact, not modulated. The dotted line marked NULLING depicts the real modulation of the disk required to make it appear steady.

Fig. 2
Fig. 2

Nulling amplitude as a function of inducing amplitude for observer LG. The results from top to bottom are for modulation along the luminance axis, along the constant R&G axis, and along the constant B axis. Note the displaced ordinates. Lines fitted to the data have parameters listed in Table 1. Observer, LG.

Fig. 3
Fig. 3

Same as Fig. 2 for observer PE.

Fig. 4
Fig. 4

Prediction of results for experiment 2. See text.

Fig. 5
Fig. 5

Conditions for experiment 2. Upper panel shows the stimuli used in the first part of each session of experiment in which observers determined the values of NT, Ni, and Nj, by adjusting the modulation of the central disk to produce the least-apparent modulation. Lower panel shows stimuli pitted against one another in the second part of a session of experiment 2 in which the observers made a forced choice of the stimulus that produced the lesser-apparent modulation.

Fig. 6
Fig. 6

Mean location in color space of the isoluminant stimulus pairs in the forced-choice part of experiment 2. The mean null stimuli obtained by adjustment along the actual inducing direction are shown by the circles. The locations of the nulls predicted by the setting along the cardinal directions are shown by the squares. The lines connect pairs of stimuli that were pitted against one another in the forced-choice trials. Observer, LG.

Fig. 7
Fig. 7

Same as Fig. 6. Observer, PE.

Fig. 8
Fig. 8

Proportion of times when observers chose the mean adjustments that they made along the direction of modulation of the inducing stimulus in preference to the nulls predicted from the settings of nulls for inducing stimuli along the cardinal directions. Result for both observers for isoluminant stimuli are plotted against the azimuth of the inducing modulation.

Fig. 9
Fig. 9

Same as Fig. 6 for stimuli out of the isoluminant plane. Chromatic modulation along the constant B direction is represented by circles and along the constant R&G direction by diamonds. Observer, LG.

Fig. 10
Fig. 10

Same as Fig. 9. Observer, PE.

Fig. 11
Fig. 11

Same as Fig. 8 for stimuli out of the isoluminant plane.

Tables (1)

Tables Icon

Table 1 Linear and Cubic Coefficients and R2 for Curves in Figs. 2 and 3

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A N = a A I + b A I 3 .

Metrics