Abstract

Observers matched patches (simulated Munsell papers) in two simultaneously presented computer-controlled displays, a standard array presented under 6500-K illumination and a test array under 4000 or 10,000 K. Adaptation to the test illuminants was limited. The adjusted patch was surrounded by a single color (annulus display) or by many colors (Mondrian display). Observers either matched hue and saturation or made surface-color (paper) matches in which the subject was asked to make the test patch look as if it were cut from the same piece of paper as the standard patch. For two of the three subjects, the paper matches were approximately color constant. The hue–saturation matches showed little color constancy. Moreover, the illumination difference between the two displays was always visible. Our data show that simultaneous mechanisms alone (e.g., simultaneous color contrast) alter hues and saturations too little to produce hue constancy.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. K. P. Horn, “Determining lightness from an image,” Comput. Graphics Image Process. 3, 277–299 (1974); D. Marr, Vision (Freeman, San Francisco, 1982).
    [CrossRef]
  2. G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980); L. T. Maloney, Computational Approaches to Color Constancy (Stanford U. Press, Stanford, Calif., 1985); L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986); M. Brill, G. West, “Contributions to the theory of invariance of color under the conditions of varying illumination,” J. Math. Biol. 11, 337–350 (1981).
    [CrossRef] [PubMed]
  3. J. A. Worthey, “Limitations of color constancy,” J. Opt. Soc. Am. A 2, 1014–1026 (1985).
    [CrossRef]
  4. J. von Kries, “Die Gesichtsempfindungen,” Handbuch Physiol. Menchen 3, 211 (1904); H. von Helmholtz, Handbuch der Physiologischen Optik, 2nd ed. (Voss, Hamburg, 1896); H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912); H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of nonselective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–436 (1938); H. Helson, D. B. Judd, M. Wilson, “Color rendition with fluorescent sources of illumination,” Ilium. Eng. 51, 329–346 (1956); review by G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).
    [CrossRef]
  5. H. Wallach, A. Galloway, “Constancy of colored objects in colored illumination,” J. Exp. Psychol. 36, 119–126 (1946).
    [CrossRef] [PubMed]
  6. T. N. Cornsweet, Visual Perception (Academic, New York, 1970), pp. 382–383.
  7. E. H. Land, “The retinex,” Am. Sci. 52, 247 (1964); E. H. Land, “The retinex theory of color vision,” Sci. Am. 237, 108–128 (1977); E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: Color vision and the natural image,” Proc. Natl. Acad. Sci. USA Phys. 80, 5163–5169 (1983); E. H. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
    [CrossRef] [PubMed]
  8. J. J. McCann, K. Houston, “Calculating color sensations from arrays of physical stimuli,” IEEE Trans. Systems Man Cybern. SMC-13, (1983).
    [CrossRef]
  9. J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
    [CrossRef]
  10. J. A. S. Kinney, “Factors affecting induced color,” Vision Res. 2, 503–525 (1962).
    [CrossRef]
  11. K. L. Kelly, K. S. Gibson, D. Nickerson, “Tristimulus specification of the Munsell Book of Color from spectrophotometric measurements,” J. Opt. Soc. Am. 33, 355–376 (1943).
    [CrossRef]
  12. Y. Le Grand, Light, Colour and Vision (Chapman, London, 1968).
  13. R. M. Evans, Light, Colour and Vision (Chapman and Hall, London, 1968).
  14. L. E. Arend, R. Goldstein, “Lightness and brightness in complex achromatic arrays,” Invest. Ophthalmol. Vis. Sci. 27, 292 (1986).
  15. D. Brainard, B. Wandell, An Analysis of the Retinex Theory of Color Vision (Stanford U. Press, Stanford, Calif., 1985).
  16. E. Land, N. Daw, “Colors seen in a flash of light,” Proc. Natl. Acad. Sci (USA) 48, 1000–1008 (1962).
    [CrossRef]

1986 (1)

L. E. Arend, R. Goldstein, “Lightness and brightness in complex achromatic arrays,” Invest. Ophthalmol. Vis. Sci. 27, 292 (1986).

1985 (1)

1983 (1)

J. J. McCann, K. Houston, “Calculating color sensations from arrays of physical stimuli,” IEEE Trans. Systems Man Cybern. SMC-13, (1983).
[CrossRef]

1980 (1)

G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980); L. T. Maloney, Computational Approaches to Color Constancy (Stanford U. Press, Stanford, Calif., 1985); L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986); M. Brill, G. West, “Contributions to the theory of invariance of color under the conditions of varying illumination,” J. Math. Biol. 11, 337–350 (1981).
[CrossRef] [PubMed]

1976 (1)

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

1974 (1)

B. K. P. Horn, “Determining lightness from an image,” Comput. Graphics Image Process. 3, 277–299 (1974); D. Marr, Vision (Freeman, San Francisco, 1982).
[CrossRef]

1964 (1)

E. H. Land, “The retinex,” Am. Sci. 52, 247 (1964); E. H. Land, “The retinex theory of color vision,” Sci. Am. 237, 108–128 (1977); E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: Color vision and the natural image,” Proc. Natl. Acad. Sci. USA Phys. 80, 5163–5169 (1983); E. H. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

1962 (2)

E. Land, N. Daw, “Colors seen in a flash of light,” Proc. Natl. Acad. Sci (USA) 48, 1000–1008 (1962).
[CrossRef]

J. A. S. Kinney, “Factors affecting induced color,” Vision Res. 2, 503–525 (1962).
[CrossRef]

1946 (1)

H. Wallach, A. Galloway, “Constancy of colored objects in colored illumination,” J. Exp. Psychol. 36, 119–126 (1946).
[CrossRef] [PubMed]

1943 (1)

1904 (1)

J. von Kries, “Die Gesichtsempfindungen,” Handbuch Physiol. Menchen 3, 211 (1904); H. von Helmholtz, Handbuch der Physiologischen Optik, 2nd ed. (Voss, Hamburg, 1896); H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912); H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of nonselective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–436 (1938); H. Helson, D. B. Judd, M. Wilson, “Color rendition with fluorescent sources of illumination,” Ilium. Eng. 51, 329–346 (1956); review by G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).
[CrossRef]

Arend, L. E.

L. E. Arend, R. Goldstein, “Lightness and brightness in complex achromatic arrays,” Invest. Ophthalmol. Vis. Sci. 27, 292 (1986).

Brainard, D.

D. Brainard, B. Wandell, An Analysis of the Retinex Theory of Color Vision (Stanford U. Press, Stanford, Calif., 1985).

Buchsbaum, G.

G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980); L. T. Maloney, Computational Approaches to Color Constancy (Stanford U. Press, Stanford, Calif., 1985); L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986); M. Brill, G. West, “Contributions to the theory of invariance of color under the conditions of varying illumination,” J. Math. Biol. 11, 337–350 (1981).
[CrossRef] [PubMed]

Cornsweet, T. N.

T. N. Cornsweet, Visual Perception (Academic, New York, 1970), pp. 382–383.

Daw, N.

E. Land, N. Daw, “Colors seen in a flash of light,” Proc. Natl. Acad. Sci (USA) 48, 1000–1008 (1962).
[CrossRef]

Evans, R. M.

R. M. Evans, Light, Colour and Vision (Chapman and Hall, London, 1968).

Galloway, A.

H. Wallach, A. Galloway, “Constancy of colored objects in colored illumination,” J. Exp. Psychol. 36, 119–126 (1946).
[CrossRef] [PubMed]

Gibson, K. S.

Goldstein, R.

L. E. Arend, R. Goldstein, “Lightness and brightness in complex achromatic arrays,” Invest. Ophthalmol. Vis. Sci. 27, 292 (1986).

Horn, B. K. P.

B. K. P. Horn, “Determining lightness from an image,” Comput. Graphics Image Process. 3, 277–299 (1974); D. Marr, Vision (Freeman, San Francisco, 1982).
[CrossRef]

Houston, K.

J. J. McCann, K. Houston, “Calculating color sensations from arrays of physical stimuli,” IEEE Trans. Systems Man Cybern. SMC-13, (1983).
[CrossRef]

Kelly, K. L.

Kinney, J. A. S.

J. A. S. Kinney, “Factors affecting induced color,” Vision Res. 2, 503–525 (1962).
[CrossRef]

Land, E.

E. Land, N. Daw, “Colors seen in a flash of light,” Proc. Natl. Acad. Sci (USA) 48, 1000–1008 (1962).
[CrossRef]

Land, E. H.

E. H. Land, “The retinex,” Am. Sci. 52, 247 (1964); E. H. Land, “The retinex theory of color vision,” Sci. Am. 237, 108–128 (1977); E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: Color vision and the natural image,” Proc. Natl. Acad. Sci. USA Phys. 80, 5163–5169 (1983); E. H. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

Le Grand, Y.

Y. Le Grand, Light, Colour and Vision (Chapman, London, 1968).

McCann, J. J.

J. J. McCann, K. Houston, “Calculating color sensations from arrays of physical stimuli,” IEEE Trans. Systems Man Cybern. SMC-13, (1983).
[CrossRef]

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

McKee, S. P.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

Nickerson, D.

Taylor, T. H.

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

von Kries, J.

J. von Kries, “Die Gesichtsempfindungen,” Handbuch Physiol. Menchen 3, 211 (1904); H. von Helmholtz, Handbuch der Physiologischen Optik, 2nd ed. (Voss, Hamburg, 1896); H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912); H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of nonselective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–436 (1938); H. Helson, D. B. Judd, M. Wilson, “Color rendition with fluorescent sources of illumination,” Ilium. Eng. 51, 329–346 (1956); review by G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).
[CrossRef]

Wallach, H.

H. Wallach, A. Galloway, “Constancy of colored objects in colored illumination,” J. Exp. Psychol. 36, 119–126 (1946).
[CrossRef] [PubMed]

Wandell, B.

D. Brainard, B. Wandell, An Analysis of the Retinex Theory of Color Vision (Stanford U. Press, Stanford, Calif., 1985).

Worthey, J. A.

Am. Sci. (1)

E. H. Land, “The retinex,” Am. Sci. 52, 247 (1964); E. H. Land, “The retinex theory of color vision,” Sci. Am. 237, 108–128 (1977); E. H. Land, “Recent advances in retinex theory and some implications for cortical computations: Color vision and the natural image,” Proc. Natl. Acad. Sci. USA Phys. 80, 5163–5169 (1983); E. H. Land, J. J. McCann, “Lightness and retinex theory,” J. Opt. Soc. Am. 61, 1–11 (1971).
[CrossRef] [PubMed]

Comput. Graphics Image Process. (1)

B. K. P. Horn, “Determining lightness from an image,” Comput. Graphics Image Process. 3, 277–299 (1974); D. Marr, Vision (Freeman, San Francisco, 1982).
[CrossRef]

Handbuch Physiol. Menchen (1)

J. von Kries, “Die Gesichtsempfindungen,” Handbuch Physiol. Menchen 3, 211 (1904); H. von Helmholtz, Handbuch der Physiologischen Optik, 2nd ed. (Voss, Hamburg, 1896); H. E. Ives, “The relation between the color of the illuminant and the color of the illuminated object,” Trans. Illum. Eng. Soc. 7, 62–72 (1912); H. Helson, “Fundamental problems in color vision. I. The principle governing changes in hue, saturation and lightness of nonselective samples in chromatic illumination,” J. Exp. Psychol. 23, 439–436 (1938); H. Helson, D. B. Judd, M. Wilson, “Color rendition with fluorescent sources of illumination,” Ilium. Eng. 51, 329–346 (1956); review by G. Wyszecki, W. S. Stiles, Color Science (Wiley, New York, 1967).
[CrossRef]

IEEE Trans. Systems Man Cybern. (1)

J. J. McCann, K. Houston, “Calculating color sensations from arrays of physical stimuli,” IEEE Trans. Systems Man Cybern. SMC-13, (1983).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (1)

L. E. Arend, R. Goldstein, “Lightness and brightness in complex achromatic arrays,” Invest. Ophthalmol. Vis. Sci. 27, 292 (1986).

J. Exp. Psychol. (1)

H. Wallach, A. Galloway, “Constancy of colored objects in colored illumination,” J. Exp. Psychol. 36, 119–126 (1946).
[CrossRef] [PubMed]

J. Franklin Inst. (1)

G. Buchsbaum, “A spatial processor model for object color perception,” J. Franklin Inst. 310, 1–26 (1980); L. T. Maloney, Computational Approaches to Color Constancy (Stanford U. Press, Stanford, Calif., 1985); L. T. Maloney, B. A. Wandell, “Color constancy: a method for recovering surface spectral reflectance,” J. Opt. Soc. Am. A 3, 29–33 (1986); M. Brill, G. West, “Contributions to the theory of invariance of color under the conditions of varying illumination,” J. Math. Biol. 11, 337–350 (1981).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Proc. Natl. Acad. Sci (USA) (1)

E. Land, N. Daw, “Colors seen in a flash of light,” Proc. Natl. Acad. Sci (USA) 48, 1000–1008 (1962).
[CrossRef]

Vision Res. (2)

J. J. McCann, S. P. McKee, T. H. Taylor, “Quantitative studies in retinex theory,” Vision Res. 16, 445–458 (1976).
[CrossRef]

J. A. S. Kinney, “Factors affecting induced color,” Vision Res. 2, 503–525 (1962).
[CrossRef]

Other (4)

T. N. Cornsweet, Visual Perception (Academic, New York, 1970), pp. 382–383.

Y. Le Grand, Light, Colour and Vision (Chapman, London, 1968).

R. M. Evans, Light, Colour and Vision (Chapman and Hall, London, 1968).

D. Brainard, B. Wandell, An Analysis of the Retinex Theory of Color Vision (Stanford U. Press, Stanford, Calif., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a, The Mondrian display. One patch in the test display (on the right) was varied to match the equivalent patch in the standard display on the left. Both displays were viewed simultaneously; observers move their eyes frequently between them. The simulated illuminant in the standard was 6500 K; in the test, it was either 4000 or 1000 K. b, Munsell designations of the patches in the standard display. Darker contours surround potential test patches and are marked to aid the reader; no outlines were present in the display, c, Luminances (in candellas per square meter) for each patch in the full-simulation condition. Upper numbers, the 4000-K test Mondrian; middle, the 6500-K standard Mondrian; lower, the 10,000-K test Mondrian.

Fig. 2
Fig. 2

Annular stimuli. Each plot shows the CIE (x, y) coordinates of the standard stimulus patches (open symbols) and the mean test-patch matches (filled symbols) under simulated illuminants of 6500 (circles), 4000 (triangles), and 10,000 K (squares). Bars represent ±1 standard error of the mean match. Where no bars appear, the bars are smaller than the plotted symbol. Solid lines with no symbols are the monitor color triangle and spectrum locus (outside). Top, middle, and bottom panels, observers LA, AR, and JS, respectively; right-hand panel, paper matches, left-hand panel, hue and saturation matches. If color constancy held perfectly, open and filled symbols would become superimposed. Color constancy is adequate with paper matches but poor with the direct hue and saturation matches.

Fig. 3
Fig. 3

Mondrian stimuli, equal-luminance condition. Symbols are as in Fig. 2.

Fig. 4
Fig. 4

Mondrian stimuli, full-simulation condition. Symbols are as in Fig. 2.

Fig. 5
Fig. 5

Mondrian stimuli, full-simulation condition with a simulated overspill of the illuminant [a 0.5-deg annular surround that simulated the illuminant falling on a black Munsell (N 1/) paper]. Only hue matches were made. Results were not altered by the overspill. Symbols are as in Fig. 2.

Fig. 6
Fig. 6

The relative spectral power of the R, G, and B phosphors of the monitor measured at every 3 nm and used in calculating the chromaticity coordinates of the patches.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L / L max = ( D / D max ) ** 2.58 ,

Metrics