Abstract

The perception of an unchanging surface color under different illuminations requires the computation of the scene-illuminant color either directly or indirectly. A possible source for the computation is the specular highlight of the surface reflection. Some issues related to color constancy are discussed, and a theory for computing the scene-illuminant chromaticity from specular highlight is described. An interesting result of the theory is that in an ideal situation, two surfaces of different colors will be sufficient for the computation.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Beck, Surface Color Perception (Cornell U. Press, Ithaca, N.Y., 1972).
  2. H. Helson, Adaptation-Level Theory (Harper and Row, New York, 1964).
  3. G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).
  4. E. H. Land, “The retinex theory of color perception,” Sci. Am. 237(6), 108–128 (1977).
    [Crossref] [PubMed]
  5. H. R. Flock, “Illumination: inferred or observed?” Percept. Psychophys. 35, 293 (1984).
    [Crossref] [PubMed]
  6. D. Marr, Vision (Freeman, San Francisco, 1982).
  7. W. Richards, E. A. Parks, “Model for color conversion,” J. Opt. Soc. Am. 61, 971–976 (1971).
    [Crossref] [PubMed]
  8. C. H. Graham, ed., Vision and Visual Perception (Wiley, New York, 1965).
  9. C. J. Bartleson, “A review of chromatic adaptation,” in Color 77, S. W. Billmeyer, G. Wysvecki, eds. (Hilger, Bristol, 1978).
    [Crossref]
  10. R. M. Boynton, Human Color Vision (Holt, Rinehart and Winston, New York, 1979).
  11. L. M. Hurvich, Color Vision (Sinauer Associates Inc., Sunderland, Mass., 1981).
  12. R. W. G. Hunt, “A model of color vision for predicting color appearance,” Color Res. Appl. 7(2), (1982), Part 1.
    [Crossref]
  13. A. Gilchrist, S. Delman, A. Jacobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
    [Crossref] [PubMed]
  14. A. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
    [Crossref] [PubMed]
  15. R. M. Evans, Eye, Film, and Camera in Color Photography (Wiley, New York, 1959), p. 72.
  16. R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graphics 15, 307–316 (1981).
    [Crossref]
  17. S. A. Shafer, “Using color to separate reflection components,” Technical Report TR 136 (Computer Science Department, University of Rochester, Rochester, New York, 1984).
  18. R. S. Hunter, The Measurement of Appearance (Wiley, New York, 1975).
  19. W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966).
  20. R. Kanthack, Tables of Refractive Indices (Hilger, London, 1921), Vol. II., App. III.
  21. R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), pp. 335–337.
  22. J. M. Rubin, W. A. Richards, “Color vision and image intensity: When are changes material?” AI Memo 631 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 1981).
  23. D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
    [Crossref]

1984 (1)

H. R. Flock, “Illumination: inferred or observed?” Percept. Psychophys. 35, 293 (1984).
[Crossref] [PubMed]

1983 (1)

A. Gilchrist, S. Delman, A. Jacobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[Crossref] [PubMed]

1982 (1)

R. W. G. Hunt, “A model of color vision for predicting color appearance,” Color Res. Appl. 7(2), (1982), Part 1.
[Crossref]

1981 (1)

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graphics 15, 307–316 (1981).
[Crossref]

1980 (1)

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[Crossref]

1977 (2)

A. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
[Crossref] [PubMed]

E. H. Land, “The retinex theory of color perception,” Sci. Am. 237(6), 108–128 (1977).
[Crossref] [PubMed]

1971 (1)

Bartleson, C. J.

C. J. Bartleson, “A review of chromatic adaptation,” in Color 77, S. W. Billmeyer, G. Wysvecki, eds. (Hilger, Bristol, 1978).
[Crossref]

Beck, J.

J. Beck, Surface Color Perception (Cornell U. Press, Ithaca, N.Y., 1972).

Boynton, R. M.

R. M. Boynton, Human Color Vision (Holt, Rinehart and Winston, New York, 1979).

Cook, R. L.

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graphics 15, 307–316 (1981).
[Crossref]

Delman, S.

A. Gilchrist, S. Delman, A. Jacobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[Crossref] [PubMed]

Duda, R. O.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), pp. 335–337.

Evans, R. M.

R. M. Evans, Eye, Film, and Camera in Color Photography (Wiley, New York, 1959), p. 72.

Flock, H. R.

H. R. Flock, “Illumination: inferred or observed?” Percept. Psychophys. 35, 293 (1984).
[Crossref] [PubMed]

Gilchrist, A.

A. Gilchrist, S. Delman, A. Jacobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[Crossref] [PubMed]

A. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
[Crossref] [PubMed]

Hart, P. E.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), pp. 335–337.

Hecht, H. G.

W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966).

Helson, H.

H. Helson, Adaptation-Level Theory (Harper and Row, New York, 1964).

Hildreth, E.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[Crossref]

Hunt, R. W. G.

R. W. G. Hunt, “A model of color vision for predicting color appearance,” Color Res. Appl. 7(2), (1982), Part 1.
[Crossref]

Hunter, R. S.

R. S. Hunter, The Measurement of Appearance (Wiley, New York, 1975).

Hurvich, L. M.

L. M. Hurvich, Color Vision (Sinauer Associates Inc., Sunderland, Mass., 1981).

Jacobsen, A.

A. Gilchrist, S. Delman, A. Jacobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[Crossref] [PubMed]

Kanthack, R.

R. Kanthack, Tables of Refractive Indices (Hilger, London, 1921), Vol. II., App. III.

Land, E. H.

E. H. Land, “The retinex theory of color perception,” Sci. Am. 237(6), 108–128 (1977).
[Crossref] [PubMed]

Marr, D.

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[Crossref]

D. Marr, Vision (Freeman, San Francisco, 1982).

Parks, E. A.

Richards, W.

Richards, W. A.

J. M. Rubin, W. A. Richards, “Color vision and image intensity: When are changes material?” AI Memo 631 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 1981).

Rubin, J. M.

J. M. Rubin, W. A. Richards, “Color vision and image intensity: When are changes material?” AI Memo 631 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 1981).

Shafer, S. A.

S. A. Shafer, “Using color to separate reflection components,” Technical Report TR 136 (Computer Science Department, University of Rochester, Rochester, New York, 1984).

Stiles, W. S.

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Torrance, K. E.

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graphics 15, 307–316 (1981).
[Crossref]

Wendlandt, W.

W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966).

Wyszecki, G.

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

Color Res. Appl. (1)

R. W. G. Hunt, “A model of color vision for predicting color appearance,” Color Res. Appl. 7(2), (1982), Part 1.
[Crossref]

Comput. Graphics (1)

R. L. Cook, K. E. Torrance, “A reflectance model for computer graphics,” Comput. Graphics 15, 307–316 (1981).
[Crossref]

J. Opt. Soc. Am. (1)

Percept. Psychophys. (2)

H. R. Flock, “Illumination: inferred or observed?” Percept. Psychophys. 35, 293 (1984).
[Crossref] [PubMed]

A. Gilchrist, S. Delman, A. Jacobsen, “The classification and integration of edges as critical to the perception of reflectance and illumination,” Percept. Psychophys. 33, 425–436 (1983).
[Crossref] [PubMed]

Proc. R. Soc. London Ser. B (1)

D. Marr, E. Hildreth, “Theory of edge detection,” Proc. R. Soc. London Ser. B 207, 187–217 (1980).
[Crossref]

Sci. Am. (1)

E. H. Land, “The retinex theory of color perception,” Sci. Am. 237(6), 108–128 (1977).
[Crossref] [PubMed]

Science (1)

A. Gilchrist, “Perceived lightness depends on perceived spatial arrangement,” Science 195, 185–187 (1977).
[Crossref] [PubMed]

Other (15)

R. M. Evans, Eye, Film, and Camera in Color Photography (Wiley, New York, 1959), p. 72.

S. A. Shafer, “Using color to separate reflection components,” Technical Report TR 136 (Computer Science Department, University of Rochester, Rochester, New York, 1984).

R. S. Hunter, The Measurement of Appearance (Wiley, New York, 1975).

W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Wiley, New York, 1966).

R. Kanthack, Tables of Refractive Indices (Hilger, London, 1921), Vol. II., App. III.

R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis (Wiley, New York, 1973), pp. 335–337.

J. M. Rubin, W. A. Richards, “Color vision and image intensity: When are changes material?” AI Memo 631 (Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mass., 1981).

D. Marr, Vision (Freeman, San Francisco, 1982).

J. Beck, Surface Color Perception (Cornell U. Press, Ithaca, N.Y., 1972).

H. Helson, Adaptation-Level Theory (Harper and Row, New York, 1964).

G. Wyszecki, W. S. Stiles, Color Science, 2nd ed. (Wiley, New York, 1982).

C. H. Graham, ed., Vision and Visual Perception (Wiley, New York, 1965).

C. J. Bartleson, “A review of chromatic adaptation,” in Color 77, S. W. Billmeyer, G. Wysvecki, eds. (Hilger, Bristol, 1978).
[Crossref]

R. M. Boynton, Human Color Vision (Holt, Rinehart and Winston, New York, 1979).

L. M. Hurvich, Color Vision (Sinauer Associates Inc., Sunderland, Mass., 1981).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reflection from an inhomogeneous surface with two components, specular and diffuse.

Fig. 2
Fig. 2

CIE 1931 x, y chromaticity diagram showing the locus of chromaticities corresponding to colors produced by mixtures of the surface color (xs, ys) and the illuminant color (xi, yi).

Fig. 3
Fig. 3

CIE 1931 x, y chromaticity diagram showing the ideal loci of chromaticities corresponding to colors from five surfaces of different colors.

Fig. 4
Fig. 4

The criterion for data selection: the two data sets collected on both sides of a color edge point must be on the same line in the color space if they are from the same surface color. The upper group satisfies the criterion but the lower group does not.

Fig. 5
Fig. 5

An image generated according to the reflectance model in Eqs. (1)(3). The specular component falls off as a power function of the cosine of the off-specular angle. The diffuse component is modeled as Lambertian reflection.

Fig. 6
Fig. 6

The (slope, intercept) space representation of line segments that are the least-squares fits to the accepted data. Each point in this space represents a line segment in the chromaticity space. All the points fall approximately on a straight line K. The chromaticity of the illuminant (Lg/Lr, Lb/Lr) can be determined from the slope and the intercept of K.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E r = k × L r × [ R × f ( i , υ ) + S × h ( i , υ ) ] ,
E g = k × L g × [ G × f ( i , υ ) + S × h ( i , υ ) ] ,
E b = k × L b × [ B × f ( i , υ ) + S × h ( i , υ ) ] ,
E b / E r = A × ( E g / E r ) + C ,
A = ( L b / L g ) × ( B R ) / ( G R )
C = ( L b / L r × ( G B ) / ( G R ) .
L b / L r = A × ( L g / L r ) + C ,
C = ( L g / L r ) × A + ( L b / L r ) .
L b / L r = the intercept of line K on the ( A , C ) plane , L g / L r = the slope of line K on the ( A , C ) plane .
L g / L r = 160.0 / 128.0 = 1.25 , L b / L r = 200.0 / 128.0 = 1.5625.

Metrics