Abstract

A recent thermal ghost imaging experiment implemented in Wu’s group [Chin. Phys. Lett. 279, 074216 (2012)] showed that both positive and negative images can be constructed by applying a novel algorithm. This algorithm allows us to form the images with the use of partial measurements from the reference arm (even which never passes through the object), conditioned on the object arm. In this paper, we present a simple theory that explains the experimental observation and provides an in-depth understanding of conventional ghost imaging. In particular, we theoretically show that the visibility of formed images through such an algorithm is not bounded by the standard value 13. In fact, it can ideally grow up to unity (with reduced imaging quality). Thus, the algorithm described here not only offers an alternative way to decode spatial correlation of thermal light, but also mimics a “bandpass filter” to remove the constant background such that the visibility or imaging contrast is improved. We further show that conditioned on one still object present in the test arm, it is possible to construct the object’s image by sampling the available reference data.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  2. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
    [CrossRef]
  3. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  4. H. Hanbury-Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature (London) 178, 1046–1048 (1956).
    [CrossRef]
  5. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [CrossRef]
  6. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [CrossRef]
  7. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [CrossRef]
  8. J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
    [CrossRef]
  9. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef]
  10. G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
    [CrossRef]
  11. D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
    [CrossRef]
  12. Y. J. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
    [CrossRef]
  13. D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
    [CrossRef]
  14. X. H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L.-A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
    [CrossRef]
  15. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
    [CrossRef]
  16. R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
    [CrossRef]
  17. A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
    [CrossRef]
  18. B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
    [CrossRef]
  19. L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79, 033835 (2009).
    [CrossRef]
  20. G. Scarcelli, V. Berardi, and Y. H. Shih, “Scarcelli, Berardi, and Shih reply,” Phys. Rev. Lett. 98, 039302 (2007).
    [CrossRef]
  21. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).
  22. Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
    [CrossRef]
  23. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010).
    [CrossRef]
  24. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
    [CrossRef]
  25. K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
    [CrossRef]
  26. L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).
  27. G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
    [CrossRef]
  28. Y.-H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
    [CrossRef]
  29. S. Thanvanthri and M. H. Rubin, “Ghost interference with an optical parametric amplifier,” Phys. Rev. A 70, 063811 (2004).
    [CrossRef]
  30. J.-M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory,” Phys. Rev. A 74, 023809 (2006).
    [CrossRef]
  31. M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
    [CrossRef]
  32. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

2012 (1)

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[CrossRef]

2010 (2)

2009 (4)

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79, 033835 (2009).
[CrossRef]

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

2008 (3)

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[CrossRef]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).

2007 (2)

A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Scarcelli, Berardi, and Shih reply,” Phys. Rev. Lett. 98, 039302 (2007).
[CrossRef]

2006 (3)

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

J.-M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory,” Phys. Rev. A 74, 023809 (2006).
[CrossRef]

2005 (5)

Y. J. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef]

Y.-H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

2004 (4)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

S. Thanvanthri and M. H. Rubin, “Ghost interference with an optical parametric amplifier,” Phys. Rev. A 70, 063811 (2004).
[CrossRef]

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[CrossRef]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

1996 (1)

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
[CrossRef]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

1963 (1)

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[CrossRef]

1956 (1)

H. Hanbury-Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature (London) 178, 1046–1048 (1956).
[CrossRef]

Agafonov, I. N.

Bache, M.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. H. Shih, “Scarcelli, Berardi, and Shih reply,” Phys. Rev. Lett. 98, 039302 (2007).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

Bondani, M.

A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
[CrossRef]

Boyd, R. W.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

Brambilla, E.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

Bromberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

Cai, Y. J.

Y. J. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

Cao, D. Z.

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Chekhova, M. V.

Chen, X. H.

Chen, X.-H.

Y.-H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[CrossRef]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef]

Cheng, J.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

Clemente, P.

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

Deacon, K. S.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[CrossRef]

Durán, V.

Erkmen, B. I.

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

Fabre, C.

A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
[CrossRef]

Feng, L. J.

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

Ferri, F.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

Gan, S.

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

Gao, L.

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

Gatti, A.

A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

Glauber, R. J.

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Han, S.

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

Hanbury-Brown, H.

H. Hanbury-Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature (London) 178, 1046–1048 (1956).
[CrossRef]

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

Huang, B.-Q.

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[CrossRef]

Katz, O.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

Lancis, J.

Liu, Q.

Lugiato, L. A.

A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
[CrossRef]

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

Luo, K.-H.

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[CrossRef]

X. H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L.-A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

Magatti, D.

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Meyers, R.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[CrossRef]

Paris, M. G. A.

A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
[CrossRef]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Qamar, S.

L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79, 033835 (2009).
[CrossRef]

Rubin, M. H.

J.-M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory,” Phys. Rev. A 74, 023809 (2006).
[CrossRef]

S. Thanvanthri and M. H. Rubin, “Ghost interference with an optical parametric amplifier,” Phys. Rev. A 70, 063811 (2004).
[CrossRef]

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. H. Shih, “Scarcelli, Berardi, and Shih reply,” Phys. Rev. Lett. 98, 039302 (2007).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[CrossRef]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Shapiro, J. H.

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).

Shih, Y.

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[CrossRef]

Shih, Y. H.

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Scarcelli, Berardi, and Shih reply,” Phys. Rev. Lett. 98, 039302 (2007).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Silberberg, Y.

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Tajahuerce, E.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Thanvanthri, S.

S. Thanvanthri and M. H. Rubin, “Ghost interference with an optical parametric amplifier,” Phys. Rev. A 70, 063811 (2004).
[CrossRef]

Torres-Company, V.

Twiss, R. Q.

H. Hanbury-Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature (London) 178, 1046–1048 (1956).
[CrossRef]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[CrossRef]

Wang, K.

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Wang, L.-G.

L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79, 033835 (2009).
[CrossRef]

Wen, J.-M.

J.-M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory,” Phys. Rev. A 74, 023809 (2006).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Wu, L.-A.

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[CrossRef]

X. H. Chen, I. N. Agafonov, K.-H. Luo, Q. Liu, R. Xian, M. V. Chekhova, and L.-A. Wu, “High-visibility, high-order lensless ghost imaging with thermal light,” Opt. Lett. 35, 1166–1168 (2010).
[CrossRef]

Y.-H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[CrossRef]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef]

Xian, R.

Xiong, J.

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

Zhai, Y.-H.

Y.-H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[CrossRef]

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef]

Zhang, D.

D. Zhang, Y.-H. Zhai, L.-A. Wu, and X.-H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef]

Y.-H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[CrossRef]

Zhang, S. H.

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

Zheng, W.-M.

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[CrossRef]

Zhu, S.-Y.

L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79, 033835 (2009).
[CrossRef]

Y. J. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

Zubairy, M. S.

L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79, 033835 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett. 95, 131110 (2009).
[CrossRef]

Chin. Phys. Lett. (1)

K.-H. Luo, B.-Q. Huang, W.-M. Zheng, and L.-A. Wu, “Nonlocal imaging by conditional averaging of random reference measurements,” Chin. Phys. Lett. 29, 074216 (2012).
[CrossRef]

Europhys. Lett. (1)

G. Scarcelli, A. Valencia, and Y. Shih, “Two-photon interference with thermal light,” Europhys. Lett. 68, 618–624 (2004).
[CrossRef]

J. Mod. Opt. (1)

A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. A. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739–760 (2006).
[CrossRef]

Nature (London) (1)

H. Hanbury-Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature (London) 178, 1046–1048 (1956).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[CrossRef]

Phys. Rev. A (12)

R. Meyers, K. S. Deacon, and Y. H. Shih, “Ghost-imaging experiment by measuring reflected photons,” Phys. Rev. A 77, 041801(R) (2008).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef]

Y.-H. Zhai, X.-H. Chen, D. Zhang, and L.-A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005).
[CrossRef]

S. Thanvanthri and M. H. Rubin, “Ghost interference with an optical parametric amplifier,” Phys. Rev. A 70, 063811 (2004).
[CrossRef]

J.-M. Wen and M. H. Rubin, “Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory,” Phys. Rev. A 74, 023809 (2006).
[CrossRef]

M. H. Rubin, “Transverse correlation in optical spontaneous parametric down-conversion,” Phys. Rev. A 54, 5349–5360 (1996).
[CrossRef]

B. I. Erkmen and J. H. Shapiro, “Unified theory of ghost imaging with Gaussian-state light,” Phys. Rev. A 77, 043809 (2008).
[CrossRef]

L.-G. Wang, S. Qamar, S.-Y. Zhu, and M. S. Zubairy, “Hanbury Brown–Twiss effect and thermal light ghost imaging: A unified approach,” Phys. Rev. A 79, 033835 (2009).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A 78, 061802(R) (2008).

Y. Bromberg, O. Katz, and Y. Silberberg, “Ghost imaging with a single detector,” Phys. Rev. A 79, 053840 (2009).
[CrossRef]

D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005).
[CrossRef]

L. Gao, S. H. Zhang, J. Xiong, S. Gan, L. J. Feng, D. Z. Cao, and K. Wang, “Correlated imaging with one-photon interference,” Phys. Rev. A 80, 021806(R) (2009).

Phys. Rev. E (1)

Y. J. Cai and S.-Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

Phys. Rev. Lett. (7)

G. Scarcelli, V. Berardi, and Y. H. Shih, “Scarcelli, Berardi, and Shih reply,” Phys. Rev. Lett. 98, 039302 (2007).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “‘Two-photon’ coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef]

J. Cheng and S. Han, “Incoherent coincidence imaging and its applicability in X-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef]

A. Gatti, M. Bondani, L. A. Lugiato, M. G. A. Paris, and C. Fabre, “Comment on ‘Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?’” Phys. Rev. Lett. 98, 039301 (2007).
[CrossRef]

Other (3)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Conventional pseudothermal GI setup (a) and the experimental setup used in [25] (b). RGG represents the rotating ground glass.

Fig. 2.
Fig. 2.

Illustration of the algorithm described in the context. By reordering the data, positive (or negative) images can be formed, for example, by summing some of I1, I3, and I7 (or I2, I4, and I6).

Fig. 3.
Fig. 3.

Double-slit thermal GI experiment. (a) The image is formed through the conventional second-order correlation measurements where 50,000 measurements have been recorded in each arm. (b1) and (b2) give examples of negative images formed by applying the algorithm (8). (c1) and (c2) illustrate the cases of positive image formations with use of the algorithm (8).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Ej(ρ⃗j,zj,tj)=dκ⃗dωE˜j(κ⃗,ω)gj(κ⃗,ω;ρ⃗j,zj)eiωtj,
gb(κ⃗,ω;ρ⃗b,zb)=eiωzbcdρ⃗oA(ρ⃗o)eiczb|κ⃗|22ωeiρ⃗o·κ⃗,
gr(κ⃗,ω;ρ⃗r,zr)=eiωzrceiczr|κ⃗|22ωeiρ⃗r·κ⃗.
G(2)(ρ⃗r)=Er*ErEb*Eb,
G(2)(ρ⃗r)=G0+G0|dρ⃗oA(ρ⃗o)δ(ρ⃗oρ⃗r)|2,
g(2)(ρ⃗r)=1+|dρ⃗oA(ρ⃗o)δ(ρ⃗oρ⃗r)|2,
1+|A(ρ⃗o)|2=1Nj=1NBjBIj(ρ⃗r)I(ρ⃗r),
{+1,ifBjB>0;1,ifBjB<0.
|A(ρ⃗o)|2=1Nj=1N(BjB1)Ij(ρ⃗r)I(ρ⃗r),
±|A(ρ⃗o)|21Mj=1M<Nsgn(BjB1)Ij(ρ⃗r)I(ρ⃗r),
sgn(x)={1,ifx>0;0,ifx=0;1,ifx<0.
|A(ρ⃗o)|2=1Nj=1N(BjB1)[Ij(ρ⃗o)I(ρ⃗o)1].
V=±ImaxIminImax+Imin,
V=j=1MIj(ρ⃗o)I(ρ⃗o)|maxMj=1MIj(ρ⃗o)I(ρ⃗o)|max+M<1,
V=Mj=1MIj(ρ⃗o)I(ρ⃗o)|minM+j=1MIj(ρ⃗o)I(ρ⃗o)|min<1,

Metrics