M. L. Adams and E. W. Larsen, “Fast iterative methods for discrete ordinates particle transport calculations,” Prog. Nucl. Energy 40, 3–159 (2002).

[CrossRef]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]

A. H. Hielscher and R. E. Alcouffe, “Discrete-ordinate transport simulations of light propagation in highly forward scattering heterogenous media,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 1998), paper ATuC2.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[CrossRef]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[CrossRef]

S. Wright, M. Schweiger, and S. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

T. Tarvainen, M. Vauhkonen, v. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Utilizing the radiative transfer equation in optical tomography,” Piers Online 4, 655–661 (2008).

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]

A. P. Schweiger, M. Gibson, and S. R. Arridge, “Computational aspects of diffuse optical tomography,” IEEE Comput. Sci. Eng., 5, 33–41 (2003).

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transfer 84, 247–260 (2004).

[CrossRef]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. A. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transfer equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29, 1741–1757 (2012).

H. H. Barrett and K. J. Myers, Foundations of Image Science, 1st ed. (Wiley, 2004).

B. Gallas and H. H. Barrett, “Modeling all orders of scatter in nuclear medicine,” in Proceedings of IEEE Nuclear Science Symposium (IEEE, 1998), pp. 1964–1968.

H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, Computational Radiology and Imaging: Therapy and Diagnostics (Springer, 1999).

B. F. Hutton, I. Buvat, and F. J. Beekman, “Review and current status of SPECT scatter correction,” Phys. Med. Biol. 56, R85–R112 (2011).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).

[CrossRef]

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” ACM Queue 6, 40–53(2008).

B. F. Hutton, I. Buvat, and F. J. Beekman, “Review and current status of SPECT scatter correction,” Phys. Med. Biol. 56, R85–R112 (2011).

[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).

[CrossRef]

R. Wells, A. Celler, and R. Harrop, “Analytical calculation of photon distributions in spect projections,” IEEE Trans. Nucl. Sci. 45, 3202–3214 (1998).

[CrossRef]

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).

[CrossRef]

W.-f. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

[CrossRef]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011).

[CrossRef]

F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” J. Comput. Inf. Technol. 6, 89–94 (1998).

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509 (2009).

[CrossRef]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. A. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transfer equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29, 1741–1757 (2012).

A. K. Jha, M. A. Kupinski, D. Kang, and E. Clarkson, “Solutions to the radiative transport equation for non-uniform media,” in Biomedical Optics (Optical Society of America, 2010), p. BSuD55.

H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, Computational Radiology and Imaging: Therapy and Diagnostics (Springer, 1999).

H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, Computational Radiology and Imaging: Therapy and Diagnostics (Springer, 1999).

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007).

[CrossRef]

E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transfer 84, 247–260 (2004).

[CrossRef]

E. D. Aydin, C. R. de Oliveira, and A. J. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).

[CrossRef]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509 (2009).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–146 (2003).

[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMMs for Fermi,” in “SC11 (2011).

S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006).

[CrossRef]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011).

[CrossRef]

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

J. K. Fletcher, “A solution of the neutron transport equation using spherical harmonics,” J. Phys. A: Math. Gen. 16, 2827–2835 (1983).

[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).

[CrossRef]

H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, Computational Radiology and Imaging: Therapy and Diagnostics (Springer, 1999).

B. Gallas and H. H. Barrett, “Modeling all orders of scatter in nuclear medicine,” in Proceedings of IEEE Nuclear Science Symposium (IEEE, 1998), pp. 1964–1968.

F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vis. Comput. 16, 703–712 (1998).

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” ACM Queue 6, 40–53(2008).

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

A. P. Schweiger, M. Gibson, and S. R. Arridge, “Computational aspects of diffuse optical tomography,” IEEE Comput. Sci. Eng., 5, 33–41 (2003).

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transfer 84, 247–260 (2004).

[CrossRef]

E. D. Aydin, C. R. de Oliveira, and A. J. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).

[CrossRef]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011).

[CrossRef]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011).

[CrossRef]

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25, 935–944 (2006).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006).

[CrossRef]

R. Wells, A. Celler, and R. Harrop, “Analytical calculation of photon distributions in spect projections,” IEEE Trans. Nucl. Sci. 45, 3202–3214 (1998).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

L. D. Montejo, A. D. Klose, and A. H. Hielscher, “Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue,” Biomed. Opt. Express 1, 861–878 (2010).

[CrossRef]

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).

[CrossRef]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain,” Opt. Lett. 29, 578–580 (2004).

[CrossRef]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]

A. H. Hielscher and R. E. Alcouffe, “Discrete-ordinate transport simulations of light propagation in highly forward scattering heterogenous media,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 1998), paper ATuC2.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]

B. Huang, J. Mielikainen, H. Oh, and H.-L. A. Huang, “Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI),” J. Comput. Phys. 230, 2207–2221 (2011).

[CrossRef]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011).

[CrossRef]

B. Huang, J. Mielikainen, H. Oh, and H.-L. A. Huang, “Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI),” J. Comput. Phys. 230, 2207–2221 (2011).

[CrossRef]

B. F. Hutton, I. Buvat, and F. J. Beekman, “Review and current status of SPECT scatter correction,” Phys. Med. Biol. 56, R85–R112 (2011).

[CrossRef]

F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” J. Comput. Inf. Technol. 6, 89–94 (1998).

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006).

[CrossRef]

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. A. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transfer equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29, 1741–1757 (2012).

A. K. Jha, M. A. Kupinski, D. Kang, and E. Clarkson, “Solutions to the radiative transport equation for non-uniform media,” in Biomedical Optics (Optical Society of America, 2010), p. BSuD55.

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

[CrossRef]

T. Tarvainen, M. Vauhkonen, v. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Utilizing the radiative transfer equation in optical tomography,” Piers Online 4, 655–661 (2008).

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt. 44, 876–886 (2005).

[CrossRef]

A. K. Jha, M. A. Kupinski, D. Kang, and E. Clarkson, “Solutions to the radiative transport equation for non-uniform media,” in Biomedical Optics (Optical Society of America, 2010), p. BSuD55.

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

M. Kim, G. Skofronick-Jackson, and J. Weinman, “Intercomparison of millimeter-wave radiative transfer models,” IEEE Trans. Geosci. Remote Sens. 42, 1882–1890 (2004).

[CrossRef]

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

L. D. Montejo, A. D. Klose, and A. H. Hielscher, “Implementation of the equation of radiative transfer on block-structured grids for modeling light propagation in tissue,” Biomed. Opt. Express 1, 861–878 (2010).

[CrossRef]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509 (2009).

[CrossRef]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

K. Kobayashi, H. Oigawa, and H. Yamagata, “The spherical harmonics method for the multigroup transport equation in x-y geometry,” Ann. Nucl. Energy 13, 663–678 (1986).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

T. Tarvainen, M. Vauhkonen, v. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Utilizing the radiative transfer equation in optical tomography,” Piers Online 4, 655–661 (2008).

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt. 44, 876–886 (2005).

[CrossRef]

S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25, 935–944 (2006).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).

A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. A. Maslov, and H. H. Barrett, “Simulating photon-transport in uniform media using the radiative transfer equation: A study using the Neumann-series approach,” J. Opt. Soc. Am. A 29, 1741–1757 (2012).

A. K. Jha, M. A. Kupinski, D. Kang, and E. Clarkson, “Solutions to the radiative transport equation for non-uniform media,” in Biomedical Optics (Optical Society of America, 2010), p. BSuD55.

J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMMs for Fermi,” in “SC11 (2011).

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

M. L. Adams and E. W. Larsen, “Fast iterative methods for discrete ordinates particle transport calculations,” Prog. Nucl. Energy 40, 3–159 (2002).

[CrossRef]

F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” J. Comput. Inf. Technol. 6, 89–94 (1998).

L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011).

[CrossRef]

L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

B. Huang, J. Mielikainen, H. Oh, and H.-L. A. Huang, “Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI),” J. Comput. Phys. 230, 2207–2221 (2011).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

D. S. Mishra BP, “Parallel computing environments: a review,” IETE Technical Review 28, 240–247 (2011).

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

J. W. Moore, “Adaptive X-ray computed tomography,” Ph.D. thesis (College of Optical Sciences, University of Arizona, 2011).

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

Y. Mukaigawa, Y. Yagi, and R. Raskar, “Analysis of light transport in scattering media,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 153–160.

H. H. Barrett and K. J. Myers, Foundations of Image Science, 1st ed. (Wiley, 2004).

S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006).

[CrossRef]

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).

S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006).

[CrossRef]

S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25, 935–944 (2006).

[CrossRef]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” ACM Queue 6, 40–53(2008).

F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vis. Comput. 16, 703–712 (1998).

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

B. Huang, J. Mielikainen, H. Oh, and H.-L. A. Huang, “Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI),” J. Comput. Phys. 230, 2207–2221 (2011).

[CrossRef]

K. Kobayashi, H. Oigawa, and H. Yamagata, “The spherical harmonics method for the multigroup transport equation in x-y geometry,” Ann. Nucl. Energy 13, 663–678 (1986).

[CrossRef]

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

[CrossRef]

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401–7409 (1998).

[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).

[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–146 (2003).

[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).

[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–146 (2003).

[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–146 (2003).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

W.-f. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

[CrossRef]

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).

Z. Wang, M. Yang, and G. Qin, “Neumann series solution to a neutron transport equation of slab geometry,” J. Syst. Sci. Complex. 6, 13–17 (1993).

S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006).

[CrossRef]

S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25, 935–944 (2006).

[CrossRef]

Y. Mukaigawa, Y. Yagi, and R. Raskar, “Analysis of light transport in scattering media,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 153–160.

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007).

[CrossRef]

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

[CrossRef]

A. P. Schweiger, M. Gibson, and S. R. Arridge, “Computational aspects of diffuse optical tomography,” IEEE Comput. Sci. Eng., 5, 33–41 (2003).

S. Wright, M. Schweiger, and S. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

[CrossRef]

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006).

[CrossRef]

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” ACM Queue 6, 40–53(2008).

M. Kim, G. Skofronick-Jackson, and J. Weinman, “Intercomparison of millimeter-wave radiative transfer models,” IEEE Trans. Geosci. Remote Sens. 42, 1882–1890 (2004).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).

[CrossRef]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” J. Comput. Inf. Technol. 6, 89–94 (1998).

F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” J. Comput. Inf. Technol. 6, 89–94 (1998).

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[CrossRef]

L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

T. Tarvainen, M. Vauhkonen, v. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Utilizing the radiative transfer equation in optical tomography,” Piers Online 4, 655–661 (2008).

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt. 44, 876–886 (2005).

[CrossRef]

J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMMs for Fermi,” in “SC11 (2011).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).

T. Tarvainen, M. Vauhkonen, v. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Utilizing the radiative transfer equation in optical tomography,” Piers Online 4, 655–661 (2008).

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt. 44, 876–886 (2005).

[CrossRef]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509 (2009).

[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

Z. Wang, M. Yang, and G. Qin, “Neumann series solution to a neutron transport equation of slab geometry,” J. Syst. Sci. Complex. 6, 13–17 (1993).

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

M. Kim, G. Skofronick-Jackson, and J. Weinman, “Intercomparison of millimeter-wave radiative transfer models,” IEEE Trans. Geosci. Remote Sens. 42, 1882–1890 (2004).

[CrossRef]

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

[CrossRef]

W.-f. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

[CrossRef]

R. Wells, A. Celler, and R. Harrop, “Analytical calculation of photon distributions in spect projections,” IEEE Trans. Nucl. Sci. 45, 3202–3214 (1998).

[CrossRef]

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007).

[CrossRef]

S. Wright, M. Schweiger, and S. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).

[CrossRef]

Y. Mukaigawa, Y. Yagi, and R. Raskar, “Analysis of light transport in scattering media,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 153–160.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).

[CrossRef]

K. Kobayashi, H. Oigawa, and H. Yamagata, “The spherical harmonics method for the multigroup transport equation in x-y geometry,” Ann. Nucl. Energy 13, 663–678 (1986).

[CrossRef]

Z. Wang, M. Yang, and G. Qin, “Neumann series solution to a neutron transport equation of slab geometry,” J. Syst. Sci. Complex. 6, 13–17 (1993).

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006).

[CrossRef]

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007).

[CrossRef]

F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vis. Comput. 16, 703–712 (1998).

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

[CrossRef]

F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vis. Comput. 16, 703–712 (1998).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with CUDA,” ACM Queue 6, 40–53(2008).

S. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. Nayar, and H. Jensen, “Acquiring scattering properties of participating media by dilution,” ACM Trans. Graph. 25, 1003–1012 (2006).

[CrossRef]

S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar, “Fast separation of direct and global components of a scene using high frequency illumination,” ACM Trans. Graph. 25, 935–944 (2006).

[CrossRef]

K. Kobayashi, H. Oigawa, and H. Yamagata, “The spherical harmonics method for the multigroup transport equation in x-y geometry,” Ann. Nucl. Energy 13, 663–678 (1986).

[CrossRef]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401–7409 (1998).

[CrossRef]

T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39, 6453–6465 (2000).

[CrossRef]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for optical tomography,” Appl. Opt. 44, 876–886 (2005).

[CrossRef]

E. D. Aydin, “Three-dimensional photon migration through voidlike regions and channels,” Appl. Opt. 46, 8272–8277 (2007).

[CrossRef]

H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” Appl. Opt. 42, 135–146 (2003).

[CrossRef]

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).

[CrossRef]

K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick, “A view of the parallel computing landscape,” Commun. ACM 52, 56–67 (2009).

[CrossRef]

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16, 79–88 (2005).

[CrossRef]

A. P. Schweiger, M. Gibson, and S. R. Arridge, “Computational aspects of diffuse optical tomography,” IEEE Comput. Sci. Eng., 5, 33–41 (2003).

W.-f. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).

[CrossRef]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).

[CrossRef]

M. Kim, G. Skofronick-Jackson, and J. Weinman, “Intercomparison of millimeter-wave radiative transfer models,” IEEE Trans. Geosci. Remote Sens. 42, 1882–1890 (2004).

[CrossRef]

R. Wells, A. Celler, and R. Harrop, “Analytical calculation of photon distributions in spect projections,” IEEE Trans. Nucl. Sci. 45, 3202–3214 (1998).

[CrossRef]

L. Szirmay-Kalos, G. Liktor, T. Umenhoffer, B. Toth, S. Kumar, and G. Lupton, “Parallel iteration to the radiative transport in inhomogeneous media with bootstrapping,” IEEE Trans. Vis. Comput. Graphics 17, 146–158 (2010).

D. S. Mishra BP, “Parallel computing environments: a review,” IETE Technical Review 28, 240–247 (2011).

F. Gao, H. Niu, H. Zhao, and H. Zhang, “The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions,” Image Vis. Comput. 16, 703–712 (1998).

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method,” Inverse Probl. 22, 1509–1532 (2006).

[CrossRef]

A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009).

[CrossRef]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).

[CrossRef]

F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens, and I. Lemahieu, “A fast algorithm to calculate the exact radiological path through a pixel or voxel space,” J. Comput. Inf. Technol. 6, 89–94 (1998).

B. Huang, J. Mielikainen, H. Oh, and H.-L. A. Huang, “Development of a GPU-based high-performance radiative transfer model for the Infrared Atmospheric Sounding Interferometer (IASI),” J. Comput. Phys. 230, 2207–2221 (2011).

[CrossRef]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230, 6010–6022 (2011).

[CrossRef]

A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” J. Comput. Phys. 220, 441–470 (2006).

[CrossRef]

A. Garofalakis, G. Zacharakis, G. Filippidis, E. Sanidas, D. D. Tsiftsis, V. Ntziachristos, T. G. Papazoglou, and J. Ripoll, “Characterization of the reduced scattering coefficient for optically thin samples: theory and experiments,” J. Opt. A 6, 725–735 (2004).

[CrossRef]

J. K. Fletcher, “A solution of the neutron transport equation using spherical harmonics,” J. Phys. A: Math. Gen. 16, 2827–2835 (1983).

[CrossRef]

E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for photon migration in turbid media,” J. Quant. Spectrosc. Radiat. Transfer 84, 247–260 (2004).

[CrossRef]

T. Deutschmann, S. Beirle, U. F. M. Grzegorski, C. Kern, L. Kritten, U. Platt, Cristina Prados-Román, Puķīte Jānis, T. Wagner, B. Werner, and K. Pfeilsticker, “The Monte Carlo atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and 3D features,” J. Quant. Spectrosc. Radiat. Transfer 112, 1119–1137 (2011).

[CrossRef]

Z. Wang, M. Yang, and G. Qin, “Neumann series solution to a neutron transport equation of slab geometry,” J. Syst. Sci. Complex. 6, 13–17 (1993).

S. Wright, M. Schweiger, and S. Arridge, “Reconstruction in optical tomography using the PN approximations,” Meas. Sci. Technol. 18, 79–86 (2007).

[CrossRef]

M. Schweiger and S. R. Arridge, “The finite-element method for the propagation of light in scattering media: frequency domain case,” Med. Phys. 24, 895–902 (1997).

[CrossRef]

E. D. Aydin, C. R. de Oliveira, and A. J. Goddard, “A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method,” Med. Phys. 29, 2013–2023 (2002).

[CrossRef]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen, “A boundary element approach for image-guided near-infrared absorption and scatter estimation,” Med. Phys. 34, 4545–4557 (2007).

[CrossRef]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20, 299–309 (1993).

[CrossRef]

R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12, 252–255 (1985).

[CrossRef]

T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,” NeuroImage 31, 1426–1433 (2006).

[CrossRef]

P. Gonzalez-Rodriguez and A. D. Kim, “Comparison of light scattering models for diffuse optical tomography,” Opt. Express 17, 8756–8774 (2009).

[CrossRef]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009).

[CrossRef]

D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).

A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R. Soc. A 367, 3055–3072 (2009).

[CrossRef]

H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in diffuse optical tomography,” Phil. Trans. R. Soc. A 367, 3073–3093 (2009).

[CrossRef]

A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998).

[CrossRef]

H. Dehghani, B. Brooksby, K. Vishwanath, B. W. Pogue, and K. D. Paulsen, “The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach,” Phys. Med. Biol. 48, 2713–2727 (2003).

[CrossRef]

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

[CrossRef]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1–R43(2005).

[CrossRef]

M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509 (2009).

[CrossRef]

B. F. Hutton, I. Buvat, and F. J. Beekman, “Review and current status of SPECT scatter correction,” Phys. Med. Biol. 56, R85–R112 (2011).

[CrossRef]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990).

[CrossRef]

Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random media:the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

[CrossRef]

A. Yodh and B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today 48, 34–40 (1995).

[CrossRef]

T. Tarvainen, M. Vauhkonen, v. Kolehmainen, J. P. Kaipio, and S. R. Arridge, “Utilizing the radiative transfer equation in optical tomography,” Piers Online 4, 655–661 (2008).

B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. USA 104, 12169–12174 (2007).

[CrossRef]

M. L. Adams and E. W. Larsen, “Fast iterative methods for discrete ordinates particle transport calculations,” Prog. Nucl. Energy 40, 3–159 (2002).

[CrossRef]

B. Gallas and H. H. Barrett, “Modeling all orders of scatter in nuclear medicine,” in Proceedings of IEEE Nuclear Science Symposium (IEEE, 1998), pp. 1964–1968.

H. H. Barrett, B. Gallas, E. Clarkson, and A. Clough, Computational Radiology and Imaging: Therapy and Diagnostics (Springer, 1999).

M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, and M. V. Narayanan, Emission Tomography: The Fundamentals of PET and SPECT (Academic, 2004).

A. H. Hielscher and R. E. Alcouffe, “Discrete-ordinate transport simulations of light propagation in highly forward scattering heterogenous media,” in Advances in Optical Imaging and Photon Migration (Optical Society of America, 1998), paper ATuC2.

“TESLA C2050/C2070 GPU Computing Processor: NVIDIA Tesla Datasheet” (2010).

“The Linux programmers manual” (2008).

J. W. Moore, “Adaptive X-ray computed tomography,” Ph.D. thesis (College of Optical Sciences, University of Arizona, 2011).

“NVIDIA CUDA C programming guide” (2012), Version 4.2.

“CUDA C best practices guide” (2012), Version 4.1.

“Tuning CUDA Applications for Fermi” (2010), Version 1.3.

A. K. Jha, M. A. Kupinski, D. Kang, and E. Clarkson, “Solutions to the radiative transport equation for non-uniform media,” in Biomedical Optics (Optical Society of America, 2010), p. BSuD55.

H. H. Barrett and K. J. Myers, Foundations of Image Science, 1st ed. (Wiley, 2004).

J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMMs for Fermi,” in “SC11 (2011).

Y. Mukaigawa, Y. Yagi, and R. Raskar, “Analysis of light transport in scattering media,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2010), pp. 153–160.