Abstract

Optical loss from scattered light could limit the performance of quantum-noise filter cavities being considered for an upgrade to the Advanced Laser Interferometer Gravitational Wave Observatory (LIGO) gravitational-wave detectors. This paper describes imaging scatterometer measurements of the large-angle scattered light from two high-quality sample optics, a high reflector and a beamsplitter. These optics are each superpolished fused silica substrates with silica:tantala dielectric coatings. They represent the current state-of-the art optical technology for use in filter cavities. We present angle-resolved scatter values and integrate these to estimate the total scatter over the measured angles. We find that the total integrated light scattered into larger angles can be as small as 4 ppm.

© 2012 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Smith for the LIGO Scientific Collaboration, “The path to the enhanced and advanced LIGO gravitational-wave detectors,” Class.l Quantum Grav. 26, 114013 (2009).
    [CrossRef]
  2. The VIRGO Collaboration, “Advanced virgo baseline design,” VIRGO Collaboration, VIR 027A 09 (2009).
  3. K. Kuroda (on behalf of the LCGT Collaboration), “Status of LCGT,” Class. Quantum Grav. 27, 084004 (2010).
    [CrossRef]
  4. The LIGO Scientific Collaboration, “Instrument science white paper,” LIGO DCC p. T1100309-v5 (2011). https.dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62186
  5. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nature Physics 7, 962 (2011).
    [CrossRef]
  6. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
    [CrossRef]
  7. J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
    [CrossRef]
  8. D. Z. Anderson, J. C. Frisch, and C. S. Masser, “Mirror reflectometer based on optical cavity decay time,” Appl. Opt. 23, 1238–1245 (1984).
    [CrossRef]
  9. G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
    [CrossRef]
  10. A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
    [CrossRef]
  11. A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).
  12. S. Sato, S. Miyoki, M. Ohashi, M. Fujimoto, T. Yamazaki, M. Fukushima, A. Ueda, K. Ueda, K. Watanabe, K. Nakamura, K. Etoh, N. Kitajima, K. Ito, and I. Kataoka, “Loss factors of mirrors for a gravitational wave antenna,” Appl. Opt. 38, 2880–2885 (1999).
    [CrossRef]
  13. The VIRGO Collaboration, “The VIRGO large mirrors: a challenge for low loss coatings,” Class. Quantum Grav. 21, S935–S945 (2004).
    [CrossRef]
  14. H. Yamamoto, “Effects of small size anomalies in a FP cavity,” LIGO DCC T1000154-v5 (2010). https.dcc-llo.ligo.org/cgi-bin/DocDB/ShowDocument?docid=10316
  15. C. J. Walsh, A. J. Leistner, and B. F. Oreb, “Power spectral density analysis of optical substrates for gravitational-wave interferometry,” Appl. Opt. 38, 4790–4801 (1999).
    [CrossRef]
  16. R. Blazey, “Light scattering by laser mirrors,” Appl. Opt. 6, 831–836 (1967).
    [CrossRef]
  17. M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
    [CrossRef]
  18. Y. L. Grand, J. P. Tach, and A. L. Floch, “Sensitive diffraction-loss measurements of transverse modes of optical cavities by the decay-time method,” J. Opt. Soc. Am. B 7, 1251–1253(1990).
    [CrossRef]
  19. G. M. Harry, T. P. Bodiya, and R. De Salvo, eds., Optical Coatings and Thermal Noise in Precision Measurement(Cambridge University, 2012).
  20. J. C. Stover, Optical Scattering2nd ed. (SPIE, 1995).
  21. C. Bruegge, N. Chrien, and D. Haner, “A spectralon brf data base for misr calibration applications,” Remote Sens. Environ. 77, 354–366 (2001).
    [CrossRef]
  22. A. Bhandari, B. Hamre, Ø. Frette, L. Zhao, J. J. Stamnes, and M. Kildemo, “Bidirectional reflectance distribution function of spectralon white reflectance standard illuminated by incoherent unpolarized and plane-polarized light,” Appl. Opt. 50, 2431–2442 (2011).
    [CrossRef]
  23. L. J. S. I. Michael and R. Cohen, “Diffuse reflectance measurements of standard diffusers,” http://www.4physics.com/tn3/lambertian.htm .
  24. P. Y. Bely, ed., The Design and Construction of Large Optical Telescopes (Springer-Verlag, 2003).
  25. B. Kells, “Scattered light loss from LIGO arm cavity mirrors,” LIGO DCC T0900128-v3 (2009). https.dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=1521

2011 (2)

2010 (1)

K. Kuroda (on behalf of the LCGT Collaboration), “Status of LCGT,” Class. Quantum Grav. 27, 084004 (2010).
[CrossRef]

2009 (1)

J. R. Smith for the LIGO Scientific Collaboration, “The path to the enhanced and advanced LIGO gravitational-wave detectors,” Class.l Quantum Grav. 26, 114013 (2009).
[CrossRef]

2008 (1)

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

2004 (1)

The VIRGO Collaboration, “The VIRGO large mirrors: a challenge for low loss coatings,” Class. Quantum Grav. 21, S935–S945 (2004).
[CrossRef]

2003 (1)

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

2001 (2)

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[CrossRef]

C. Bruegge, N. Chrien, and D. Haner, “A spectralon brf data base for misr calibration applications,” Remote Sens. Environ. 77, 354–366 (2001).
[CrossRef]

1999 (2)

1998 (1)

A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).

1996 (1)

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

1992 (1)

1990 (1)

1984 (1)

1967 (1)

Anderson, D. Z.

Asadchikov, V. E.

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

Azarova, V. V.

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

Bhandari, A.

Blazey, R.

Bruegge, C.

C. Bruegge, N. Chrien, and D. Haner, “A spectralon brf data base for misr calibration applications,” Remote Sens. Environ. 77, 354–366 (2001).
[CrossRef]

Chelkowski, S.

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Chen, Y.

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Chrien, N.

C. Bruegge, N. Chrien, and D. Haner, “A spectralon brf data base for misr calibration applications,” Remote Sens. Environ. 77, 354–366 (2001).
[CrossRef]

Danzmann, K.

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Etoh, K.

Floch, A. L.

Franzen, A.

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Frette, Ø.

Frisch, J. C.

Fujimoto, M.

Fukushima, M.

Grand, Y. L.

Grishchenko, Y. V.

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

Hamre, B.

Haner, D.

C. Bruegge, N. Chrien, and D. Haner, “A spectralon brf data base for misr calibration applications,” Remote Sens. Environ. 77, 354–366 (2001).
[CrossRef]

Harms, J.

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Ito, K.

Kataoka, I.

S. Sato, S. Miyoki, M. Ohashi, M. Fujimoto, T. Yamazaki, M. Fukushima, A. Ueda, K. Ueda, K. Watanabe, K. Nakamura, K. Etoh, N. Kitajima, K. Ito, and I. Kataoka, “Loss factors of mirrors for a gravitational wave antenna,” Appl. Opt. 38, 2880–2885 (1999).
[CrossRef]

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Kells, B.

B. Kells, “Scattered light loss from LIGO arm cavity mirrors,” LIGO DCC T0900128-v3 (2009). https.dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=1521

Kildemo, M.

Kimble, H. J.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[CrossRef]

G. Rempe, R. J. Thompson, H. J. Kimble, and R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
[CrossRef]

Kitajima, N.

S. Sato, S. Miyoki, M. Ohashi, M. Fujimoto, T. Yamazaki, M. Fukushima, A. Ueda, K. Ueda, K. Watanabe, K. Nakamura, K. Etoh, N. Kitajima, K. Ito, and I. Kataoka, “Loss factors of mirrors for a gravitational wave antenna,” Appl. Opt. 38, 2880–2885 (1999).
[CrossRef]

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Kuroda, K.

K. Kuroda (on behalf of the LCGT Collaboration), “Status of LCGT,” Class. Quantum Grav. 27, 084004 (2010).
[CrossRef]

Lalezari, R.

Leistner, A. J.

Levin, Y.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[CrossRef]

Masser, C. S.

Matsko, A. B.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[CrossRef]

Mitake, T.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Miyoki, S.

Nakamura, K.

S. Sato, S. Miyoki, M. Ohashi, M. Fujimoto, T. Yamazaki, M. Fukushima, A. Ueda, K. Ueda, K. Watanabe, K. Nakamura, K. Etoh, N. Kitajima, K. Ito, and I. Kataoka, “Loss factors of mirrors for a gravitational wave antenna,” Appl. Opt. 38, 2880–2885 (1999).
[CrossRef]

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Ohashi, M.

O-Hashi, M.

A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).

Oreb, B. F.

Rempe, G.

Roshchin, B. S.

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

Sato, S.

Schnabel, R.

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Sekiguchi, H.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Smith, J. R.

J. R. Smith for the LIGO Scientific Collaboration, “The path to the enhanced and advanced LIGO gravitational-wave detectors,” Class.l Quantum Grav. 26, 114013 (2009).
[CrossRef]

Stamnes, J. J.

Stover, J. C.

J. C. Stover, Optical Scattering2nd ed. (SPIE, 1995).

Tach, J. P.

Thompson, R. J.

Thorne, K. S.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[CrossRef]

Tolstikhina, A. L.

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

Uchisawa, K.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Ueda, A.

S. Sato, S. Miyoki, M. Ohashi, M. Fujimoto, T. Yamazaki, M. Fukushima, A. Ueda, K. Ueda, K. Watanabe, K. Nakamura, K. Etoh, N. Kitajima, K. Ito, and I. Kataoka, “Loss factors of mirrors for a gravitational wave antenna,” Appl. Opt. 38, 2880–2885 (1999).
[CrossRef]

A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Ueda, K.

S. Sato, S. Miyoki, M. Ohashi, M. Fujimoto, T. Yamazaki, M. Fukushima, A. Ueda, K. Ueda, K. Watanabe, K. Nakamura, K. Etoh, N. Kitajima, K. Ito, and I. Kataoka, “Loss factors of mirrors for a gravitational wave antenna,” Appl. Opt. 38, 2880–2885 (1999).
[CrossRef]

A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Uehara, N.

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Vahlbruch, H.

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Vyatchanin, S. P.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[CrossRef]

Walsh, C. J.

Waseda, K.

A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).

Watanabe, K.

Yamamoto, H.

H. Yamamoto, “Effects of small size anomalies in a FP cavity,” LIGO DCC T1000154-v5 (2010). https.dcc-llo.ligo.org/cgi-bin/DocDB/ShowDocument?docid=10316

Yamazaki, T.

Yoneda, H.

A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).

Zanaveskin, M. L.

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

Zhao, L.

Appl. Opt. (5)

Class. Quantum Grav. (3)

J. R. Smith for the LIGO Scientific Collaboration, “The path to the enhanced and advanced LIGO gravitational-wave detectors,” Class.l Quantum Grav. 26, 114013 (2009).
[CrossRef]

K. Kuroda (on behalf of the LCGT Collaboration), “Status of LCGT,” Class. Quantum Grav. 27, 084004 (2010).
[CrossRef]

The VIRGO Collaboration, “The VIRGO large mirrors: a challenge for low loss coatings,” Class. Quantum Grav. 21, S935–S945 (2004).
[CrossRef]

Cryst. Rep. (1)

M. L. Zanaveskin, B. S. Roshchin, Y. V. Grishchenko, V. V. Azarova, V. E. Asadchikov, and A. L. Tolstikhina, “Correlation between the substrate roughness and light loss for interference mirror coatings,” Cryst. Rep. 53, 701–707 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Physics (1)

A. Ueda, H. Yoneda, K. Ueda, K. Waseda, and M. O-Hashi, “Two-dimensional measurement of optical parameters of superhigh-quality mirrors,” Laser Physics 8, 697–702(1998).

Nature Physics (1)

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nature Physics 7, 962 (2011).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (1)

A. Ueda, N. Uehara, K. Uchisawa, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, and I. Kataoka, “Ultra-high quality cavity with 1.5 ppm loss at 1064 nm,” Opt. Rev. 3, 369–372 (1996).
[CrossRef]

Phys. Rev. D (2)

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[CrossRef]

J. Harms, Y. Chen, S. Chelkowski, A. Franzen, H. Vahlbruch, K. Danzmann, and R. Schnabel, “Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors,” Phys. Rev. D 68, 042001 (2003).
[CrossRef]

Remote Sens. Environ. (1)

C. Bruegge, N. Chrien, and D. Haner, “A spectralon brf data base for misr calibration applications,” Remote Sens. Environ. 77, 354–366 (2001).
[CrossRef]

Other (8)

L. J. S. I. Michael and R. Cohen, “Diffuse reflectance measurements of standard diffusers,” http://www.4physics.com/tn3/lambertian.htm .

P. Y. Bely, ed., The Design and Construction of Large Optical Telescopes (Springer-Verlag, 2003).

B. Kells, “Scattered light loss from LIGO arm cavity mirrors,” LIGO DCC T0900128-v3 (2009). https.dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=1521

G. M. Harry, T. P. Bodiya, and R. De Salvo, eds., Optical Coatings and Thermal Noise in Precision Measurement(Cambridge University, 2012).

J. C. Stover, Optical Scattering2nd ed. (SPIE, 1995).

H. Yamamoto, “Effects of small size anomalies in a FP cavity,” LIGO DCC T1000154-v5 (2010). https.dcc-llo.ligo.org/cgi-bin/DocDB/ShowDocument?docid=10316

The LIGO Scientific Collaboration, “Instrument science white paper,” LIGO DCC p. T1100309-v5 (2011). https.dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=62186

The VIRGO Collaboration, “Advanced virgo baseline design,” VIRGO Collaboration, VIR 027A 09 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics