Abstract

A scintillation resistant sensor that allows retrieval of an input optical wave phase using a multi-aperture phase reconstruction (MAPR) technique is introduced and analyzed. The MAPR sensor is based on a low-resolution lenslet array in the classical Shack–Hartmann arrangement and two high-resolution photo-arrays for simultaneous measurements of pupil- and focal-plane intensity distributions, which are used for retrieval of the wavefront phase in a two stage process: (a) phase reconstruction inside the sensor pupil subregions corresponding to lenslet subapertures and (b) recovery of subaperture averaged phase components (piston phases). Numerical simulations demonstrate the efficiency of the MAPR technique in conditions of strong intensity scintillations and the presence of wavefront branch points.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Shack-Hartmann wavefront sensing based on binary-aberration-mode filtering

Shuai Wang, Ping Yang, Bing Xu, Lizhi Dong, and Mingwu Ao
Opt. Express 23(4) 5052-5064 (2015)

Wavefront sensing for a Shack–Hartmann sensor using phase retrieval based on a sequence of intensity patterns

Roghayeh Yazdani and Hamidreza Fallah
Appl. Opt. 56(5) 1358-1364 (2017)

Compensation of distant phase-distorting layers. I. Narrow-field-of-view adaptive receiver system

Miao Yu and Mikhail A. Vorontsov
J. Opt. Soc. Am. A 21(9) 1645-1658 (2004)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription