Abstract

In this paper a hybrid modulation scheme based on pulse position modulation (PPM) and binary phase shift keying subcarrier intensity modulation (BPSK-SIM) schemes for free-space optical communications is proposed. The analytical bit error rate (BER) performance is investigated in weak and saturated turbulence channels and results are verified with the simulation data. Results show that performance of PPM-BPSK-SIM is superior to BPSK-SIM in all turbulence regimes; however, it outperforms 2-PPM for the turbulence variance σ12>0.2. PPM-BPSK-SIM offers a signal-to-noise ratio (SNR) gain of 50 dB in the saturation regime compared to BPSK at a BER of 106. The SNR gain in comparison to PPM improves as the strength of the turbulence level increases.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ghassemlooy and W. O. Popoola, “Terrestrial free-space optical communications,” in Mobile and Wireless Communications Network Layer and Circuit Level Design, S. A. Fares and F. Adachi, eds. (InTech, 2010), pp. 355–392.
  2. W. O. Popoola, “Subcarrier intensity modulated free space optical communication systems,” Ph.D. dissertation (Northumbria University, 2009).
  3. A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun 60, 479–487 (2012).
    [CrossRef]
  4. N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.
  5. B. Braua and D. Barua, “Channel capacity of MIMO FSO under strong turbulent conditions,” Int. J. Comput. Sci. 11, 1–5 (2011).
  6. N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009).
    [CrossRef]
  7. F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
    [CrossRef]
  8. I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
    [CrossRef]
  9. W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol. 27, 967–973 (2009).
    [CrossRef]
  10. X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
    [CrossRef]
  11. W. Gappmair, S. Hranilovic, and E. Leitgeb, “OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions,” IEEE Commun. Lett. 15, 875–877 (2011).
    [CrossRef]
  12. E. J. Lee and V. W. S. Chan, “Optical communications over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22, 1896–1906 (2004).
    [CrossRef]
  13. V. W. S. Chan, “Free-space optical communications,” IEEE J. Lightwave Technol. 24, 4750–4762 (2006).
    [CrossRef]
  14. L. A. Ambrosio, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, “Overcoming diffraction in FSO systems using (GRIN) axicons for approximating the longitudinal intensity profiles,” J. Lightwave Technol. 29, 2527–2532 (2011).
    [CrossRef]
  15. S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Commun. 6, 2813–2819 (2007).
    [CrossRef]
  16. E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009).
    [CrossRef]
  17. M. Uysal, J. T. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Commun. 5, 1229–1233 (2006).
    [CrossRef]
  18. T. Weyrauch and M. A. Vorontsov, “Free-space laser communications with adaptive optics: Atmospheric compensation experiments,” J. Opt. Fiber Commun. Res. 1, 355–379 (2004).
    [CrossRef]
  19. M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1, 580–593 (2009).
    [CrossRef]
  20. J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
    [CrossRef]
  21. G. R. Osche, Optical Detection Theory for Laser Applications1st ed. (Wiley, 2002).
  22. R. Ramirez-Iniguez, S. M. Idrus, and Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (Auerbach, 2008).
  23. H. Hemmati, ed., Deep Space Optical Communications, Deep Space Communications and Navigation Series (Wiley, 2006).
  24. K. K. Wong, T. O’Farrell, and M. Kiatweerasakul, “The performance of optical wireless OOK, 2-PPM and spread spectrum under the effects of multipath dispersion and artificial light interference,” Int. J. Commun. Syst. 13, 551–576 (2000).
    [CrossRef]
  25. X. Fang, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” J. Opt. Commun. Netw. 1, 404–415 (2009).
    [CrossRef]
  26. H. Rongqing, Z. Benyuan, H. Renxiang, T. A. Christopher, R. D. Kenneth, and R. Douglas, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20, 417–427(2002).
    [CrossRef]

2012 (1)

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun 60, 479–487 (2012).
[CrossRef]

2011 (3)

B. Braua and D. Barua, “Channel capacity of MIMO FSO under strong turbulent conditions,” Int. J. Comput. Sci. 11, 1–5 (2011).

W. Gappmair, S. Hranilovic, and E. Leitgeb, “OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions,” IEEE Commun. Lett. 15, 875–877 (2011).
[CrossRef]

L. A. Ambrosio, M. Zamboni-Rached, and H. E. Hernandez-Figueroa, “Overcoming diffraction in FSO systems using (GRIN) axicons for approximating the longitudinal intensity profiles,” J. Lightwave Technol. 29, 2527–2532 (2011).
[CrossRef]

2009 (6)

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009).
[CrossRef]

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009).
[CrossRef]

W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol. 27, 967–973 (2009).
[CrossRef]

X. Fang, M. A. Khalighi, and S. Bourennane, “Coded PPM and multipulse PPM and iterative detection for free-space optical links,” J. Opt. Commun. Netw. 1, 404–415 (2009).
[CrossRef]

M. A. Khalighi, N. Schwartz, N. Aitamer, and S. Bourennane, “Fading reduction by aperture averaging and spatial diversity in optical wireless systems,” J. Opt. Commun. Netw. 1, 580–593 (2009).
[CrossRef]

2007 (2)

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Commun. 6, 2813–2819 (2007).
[CrossRef]

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[CrossRef]

2006 (2)

M. Uysal, J. T. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Commun. 5, 1229–1233 (2006).
[CrossRef]

V. W. S. Chan, “Free-space optical communications,” IEEE J. Lightwave Technol. 24, 4750–4762 (2006).
[CrossRef]

2004 (2)

E. J. Lee and V. W. S. Chan, “Optical communications over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22, 1896–1906 (2004).
[CrossRef]

T. Weyrauch and M. A. Vorontsov, “Free-space laser communications with adaptive optics: Atmospheric compensation experiments,” J. Opt. Fiber Commun. Res. 1, 355–379 (2004).
[CrossRef]

2002 (2)

H. Rongqing, Z. Benyuan, H. Renxiang, T. A. Christopher, R. D. Kenneth, and R. Douglas, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightwave Technol. 20, 417–427(2002).
[CrossRef]

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

2001 (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

2000 (1)

K. K. Wong, T. O’Farrell, and M. Kiatweerasakul, “The performance of optical wireless OOK, 2-PPM and spread spectrum under the effects of multipath dispersion and artificial light interference,” Int. J. Commun. Syst. 13, 551–576 (2000).
[CrossRef]

Aitamer, N.

Ambrosio, L. A.

Awan, M. S.

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

Barua, D.

B. Braua and D. Barua, “Channel capacity of MIMO FSO under strong turbulent conditions,” Int. J. Comput. Sci. 11, 1–5 (2011).

Bayaki, E.

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009).
[CrossRef]

Benyuan, Z.

Bourennane, S.

Braua, B.

B. Braua and D. Barua, “Channel capacity of MIMO FSO under strong turbulent conditions,” Int. J. Comput. Sci. 11, 1–5 (2011).

Chan, V. W. S.

V. W. S. Chan, “Free-space optical communications,” IEEE J. Lightwave Technol. 24, 4750–4762 (2006).
[CrossRef]

E. J. Lee and V. W. S. Chan, “Optical communications over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22, 1896–1906 (2004).
[CrossRef]

Christopher, T. A.

Cowley, W.

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009).
[CrossRef]

Douglas, R.

Duca, E.

N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.

Fang, X.

Farid, A. A.

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun 60, 479–487 (2012).
[CrossRef]

Gappmair, W.

W. Gappmair, S. Hranilovic, and E. Leitgeb, “OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions,” IEEE Commun. Lett. 15, 875–877 (2011).
[CrossRef]

Ghassemlooy, Z.

W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol. 27, 967–973 (2009).
[CrossRef]

Z. Ghassemlooy and W. O. Popoola, “Terrestrial free-space optical communications,” in Mobile and Wireless Communications Network Layer and Circuit Level Design, S. A. Fares and F. Adachi, eds. (InTech, 2010), pp. 355–392.

Giggenbach, D.

N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.

Guillen i Fabregas, A.

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009).
[CrossRef]

Hernandez-Figueroa, H. E.

Horwath, J.

N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.

Hranilovic, S.

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun 60, 479–487 (2012).
[CrossRef]

W. Gappmair, S. Hranilovic, and E. Leitgeb, “OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions,” IEEE Commun. Lett. 15, 875–877 (2011).
[CrossRef]

Idrus, S. M.

R. Ramirez-Iniguez, S. M. Idrus, and Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (Auerbach, 2008).

Kahn, J. M.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

Kandus, G.

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

Kavehrad, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Commun. 6, 2813–2819 (2007).
[CrossRef]

Kenneth, R. D.

Khalighi, M. A.

Kiatweerasakul, M.

K. K. Wong, T. O’Farrell, and M. Kiatweerasakul, “The performance of optical wireless OOK, 2-PPM and spread spectrum under the effects of multipath dispersion and artificial light interference,” Int. J. Commun. Syst. 13, 551–576 (2000).
[CrossRef]

Kim, I. I.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Korevaar, E.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Kvicera, V.

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

Lee, E. J.

E. J. Lee and V. W. S. Chan, “Optical communications over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22, 1896–1906 (2004).
[CrossRef]

Leitgeb, E.

W. Gappmair, S. Hranilovic, and E. Leitgeb, “OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions,” IEEE Commun. Lett. 15, 875–877 (2011).
[CrossRef]

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.

Letzepis, N.

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009).
[CrossRef]

Li, J.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[CrossRef]

Li, J. T.

M. Uysal, J. T. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Commun. 5, 1229–1233 (2006).
[CrossRef]

Liu, J. Q.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[CrossRef]

Mallik, R. K.

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009).
[CrossRef]

McArthur, B.

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Muhammad, S.

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

Nadeem, F.

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

Navidpour, S. M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Commun. 6, 2813–2819 (2007).
[CrossRef]

Nguyen, K.

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009).
[CrossRef]

O’Farrell, T.

K. K. Wong, T. O’Farrell, and M. Kiatweerasakul, “The performance of optical wireless OOK, 2-PPM and spread spectrum under the effects of multipath dispersion and artificial light interference,” Int. J. Commun. Syst. 13, 551–576 (2000).
[CrossRef]

Osche, G. R.

G. R. Osche, Optical Detection Theory for Laser Applications1st ed. (Wiley, 2002).

Perlot, N.

N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.

Popoola, W. O.

W. O. Popoola and Z. Ghassemlooy, “BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence,” J. Lightwave Technol. 27, 967–973 (2009).
[CrossRef]

W. O. Popoola, “Subcarrier intensity modulated free space optical communication systems,” Ph.D. dissertation (Northumbria University, 2009).

Z. Ghassemlooy and W. O. Popoola, “Terrestrial free-space optical communications,” in Mobile and Wireless Communications Network Layer and Circuit Level Design, S. A. Fares and F. Adachi, eds. (InTech, 2010), pp. 355–392.

Ramirez-Iniguez, R.

R. Ramirez-Iniguez, S. M. Idrus, and Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (Auerbach, 2008).

Renxiang, H.

Rongqing, H.

Schober, R.

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009).
[CrossRef]

Schwartz, N.

Sun, Z.

R. Ramirez-Iniguez, S. M. Idrus, and Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (Auerbach, 2008).

Taylor, D. P.

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[CrossRef]

Uysal, M.

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Commun. 6, 2813–2819 (2007).
[CrossRef]

M. Uysal, J. T. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Commun. 5, 1229–1233 (2006).
[CrossRef]

Vorontsov, M. A.

T. Weyrauch and M. A. Vorontsov, “Free-space laser communications with adaptive optics: Atmospheric compensation experiments,” J. Opt. Fiber Commun. Res. 1, 355–379 (2004).
[CrossRef]

Weyrauch, T.

T. Weyrauch and M. A. Vorontsov, “Free-space laser communications with adaptive optics: Atmospheric compensation experiments,” J. Opt. Fiber Commun. Res. 1, 355–379 (2004).
[CrossRef]

Wong, K. K.

K. K. Wong, T. O’Farrell, and M. Kiatweerasakul, “The performance of optical wireless OOK, 2-PPM and spread spectrum under the effects of multipath dispersion and artificial light interference,” Int. J. Commun. Syst. 13, 551–576 (2000).
[CrossRef]

Yu, M.

M. Uysal, J. T. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Commun. 5, 1229–1233 (2006).
[CrossRef]

Zamboni-Rached, M.

Zhu, X.

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

IEEE Commun. Lett. (1)

W. Gappmair, S. Hranilovic, and E. Leitgeb, “OOK performance for terrestrial FSO links in turbulent atmosphere with pointing errors modeled by Hoyt distributions,” IEEE Commun. Lett. 15, 875–877 (2011).
[CrossRef]

IEEE J. Lightwave Technol. (1)

V. W. S. Chan, “Free-space optical communications,” IEEE J. Lightwave Technol. 24, 4750–4762 (2006).
[CrossRef]

IEEE J. Sel. Areas Commun. (3)

N. Letzepis, K. Nguyen, A. Guillen i Fabregas, and W. Cowley, “Outage analysis of the hybrid free-space optical and radio-frequency channel,” IEEE J. Sel. Areas Commun. 27, 1709–1719 (2009).
[CrossRef]

F. Nadeem, V. Kvicera, M. S. Awan, E. Leitgeb, S. Muhammad, and G. Kandus, “Weather effects on hybrid FSO/RF communication link,” IEEE J. Sel. Areas Commun. 27, 1687–1697 (2009).
[CrossRef]

E. J. Lee and V. W. S. Chan, “Optical communications over the clear turbulent atmospheric channel using diversity,” IEEE J. Sel. Areas Commun. 22, 1896–1906 (2004).
[CrossRef]

IEEE Trans. Commun (1)

A. A. Farid and S. Hranilovic, “Diversity gain and outage probability for MIMO free-space optical links with misalignment,” IEEE Trans. Commun 60, 479–487 (2012).
[CrossRef]

IEEE Trans. Commun. (4)

X. Zhu and J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002).
[CrossRef]

S. M. Navidpour, M. Uysal, and M. Kavehrad, “BER performance of free-space optical transmission with spatial diversity,” IEEE Trans. Commun. 6, 2813–2819 (2007).
[CrossRef]

E. Bayaki, R. Schober, and R. K. Mallik, “Performance analysis of MIMO free-space optical systems in gamma-gamma fading,” IEEE Trans. Commun. 57, 3415–3424 (2009).
[CrossRef]

J. Li, J. Q. Liu, and D. P. Taylor, “Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels,” IEEE Trans. Commun. 55, 1598–1606 (2007).
[CrossRef]

IEEE Trans. Wirel. Commun. (1)

M. Uysal, J. T. Li, and M. Yu, “Error rate performance analysis of coded free-space optical links over gamma-gamma atmospheric turbulence channels,” IEEE Trans. Wirel. Commun. 5, 1229–1233 (2006).
[CrossRef]

Int. J. Commun. Syst. (1)

K. K. Wong, T. O’Farrell, and M. Kiatweerasakul, “The performance of optical wireless OOK, 2-PPM and spread spectrum under the effects of multipath dispersion and artificial light interference,” Int. J. Commun. Syst. 13, 551–576 (2000).
[CrossRef]

Int. J. Comput. Sci. (1)

B. Braua and D. Barua, “Channel capacity of MIMO FSO under strong turbulent conditions,” Int. J. Comput. Sci. 11, 1–5 (2011).

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (2)

J. Opt. Fiber Commun. Res. (1)

T. Weyrauch and M. A. Vorontsov, “Free-space laser communications with adaptive optics: Atmospheric compensation experiments,” J. Opt. Fiber Commun. Res. 1, 355–379 (2004).
[CrossRef]

Proc. SPIE (1)

I. I. Kim, B. McArthur, and E. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. SPIE 4214, 26–37 (2001).
[CrossRef]

Other (6)

N. Perlot, E. Duca, J. Horwath, D. Giggenbach, and E. Leitgeb, “System requirements for optical HAP-satellite links,” in 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, Graz, Austria, 25 July, 2008 (2008), pp. 72–76.

Z. Ghassemlooy and W. O. Popoola, “Terrestrial free-space optical communications,” in Mobile and Wireless Communications Network Layer and Circuit Level Design, S. A. Fares and F. Adachi, eds. (InTech, 2010), pp. 355–392.

W. O. Popoola, “Subcarrier intensity modulated free space optical communication systems,” Ph.D. dissertation (Northumbria University, 2009).

G. R. Osche, Optical Detection Theory for Laser Applications1st ed. (Wiley, 2002).

R. Ramirez-Iniguez, S. M. Idrus, and Z. Sun, Optical Wireless Communications: IR for Wireless Connectivity (Auerbach, 2008).

H. Hemmati, ed., Deep Space Optical Communications, Deep Space Communications and Navigation Series (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Block diagram of L-PPM-BPSK-SIM FSO communication system: (a) transmitter and (b) receiver.

Fig. 2.
Fig. 2.

Theoretical and simulated BER against the SNR (dB) for 2-PPM-BPSK in the lognormal and negative exponential turbulence channel.

Fig. 3.
Fig. 3.

SNR gain against the turbulence strength at a BER of 106 for 2-PPM-BPSK-SIM when compared with 2-PPM, BPSK-SIM in the lognormal atmospheric turbulence channel.

Fig. 4.
Fig. 4.

BER against the SNR (dB) for 2-PPM-BPSK, 2-PPM, and BPSK-SIM in the saturation regime.

Fig. 5.
Fig. 5.

BER against the SNR (dB) for 4-PPM-BPSK, 4-PPM, and BPSK-SIM in the lognormal atmospheric turbulence channel.

Fig. 6.
Fig. 6.

BER against the SNR (dB) for 4-PPM-BPSK, 4-PPM, and BPSK-SIM in the negative exponential atmospheric turbulence channel.

Fig. 7.
Fig. 7.

Simulated BER against the SNR (dB) for 2-, 4-, and 8-PPM-BPSK-SIM in the lognormal and saturation turbulence regime.

Tables (1)

Tables Icon

Table 1. Simulation Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

σl2=1.23Cn2k7Lp116,
pI=1I2πσl2exp{(lnII0+σl22)22σl2}I0,
pI=1I0exp{II0}I0.
i(t)=RI(k=0L1Ckg(tkTs))+n(t),
PSER=Q(I2σLppm2).
PSYER=0Q(I2σ2ppm2)p(I)dI.
i(t)=RI(1+ζm(t))+n(t),
Pe=0Q(I/2σ2)p(I)dI.
i(t)=R(k=1LIk(1+ζcos(ωt+Ckπ)g(t(k1)Ts)))+n(t).
iD(t)=±R2k=1LIk+nD(t),
i1(t)=12RI1+n1(t),i2(t)=12RI2+n2(t).
Pe=Q(I1+I22σ2ppm).
p(z)=1z2πσu2exp[(ln(z)μu)22σu2],
μu=ln(N)0.5ln[1+exp(σl2)1N],
σu2=ln[1+exp(σl2)N].
p2ppmbpsk=oQ(I0z2σ2ppm)p(z)dz.
p(z)=(I0)NzN1exp(z/I0)Γ(N)z0.

Metrics