Abstract

We report the creation and study of a polarization independent light scattering material system based on surface-polymer stabilized liquid crystals. Originally isotropic cell substrates with thin nonpolymerized reactive mesogen layers are used for the alignment of pure nonreactive nematic liquid crystals. The partial interdiffusion of the two materials followed by the application of orienting external electric and magnetic fields and the photo polymerization of the reactive mesogen allow us the control of electro-optic scattering properties of obtained cells.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).
  2. J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
    [CrossRef]
  3. A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological investigation of UV-curable polymer-dispersed liquid-crystal (PDLC) materials,” Chem. Mater. 6, 1726–1736 (1994).
    [CrossRef]
  4. L. Bouteiller and P. Le Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).
    [CrossRef]
  5. G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries (Taylor & Francis, 1996).
  6. R. A. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
    [CrossRef]
  7. G. P. Crawford, A. Scharkowski, Y. K. Fung, and J. W. Doane, “Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix,” Phys. Rev. E 52, R1273–R1276 (1995).
    [CrossRef]
  8. S. J. Cox, V. Yu. Reshetnyak, and T. J. Sluckin, “Effective medium theory of light scattering in polymer dispersed liquid crystal films,” J. Phys. D 31, 1611–1625 (1998).
    [CrossRef]
  9. P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 261, 383–392 (1995).
    [CrossRef]
  10. D. Dumont, T.V. Galstian, S. Senkow, and A. M. Ritcey, “Liquid crystal photoalignment using new photoisomerisable Langmuir–Blodgett films,” Mol. Cryst. Liq. Cryst. 375, 341–352 (2002).
    [CrossRef]
  11. G. Goubert and T. V. Galstian, “Light controlled capillarity of liquid crystals on photo anisotropic surfaces,” Mol. Cryst. Liq. Cryst. 526, 46–57 (2010).
    [CrossRef]
  12. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558–10564 (2006).
    [CrossRef]
  13. J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Biomacromolecules 44, 344–348 (2011).
    [CrossRef]
  14. J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012).
    [CrossRef]
  15. S. Bassene and T. Galstian, “Coherent recovery of the degree of polarization of light propagating in random anisotropy media,” Opt. Lett. 35, 3294–3296 (2010).
    [CrossRef]
  16. S. Bassene and T. Galstian, “Interferential quenching of light transmission in microsphere dispersions of liquid-crystal clusters,” Opt. Lett. 34, 1663–1665 (2009).
    [CrossRef]
  17. S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .
  18. H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
    [CrossRef]
  19. C. Snively, P. Y. Chen, R. A. Palmer, and J. L. Koenig, “Stabilization of polymer dispersed liquid crystal systems using surface active agents,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 289, 11–23 (1996).
    [CrossRef]
  20. V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
    [CrossRef]
  21. Merck Product Specifications, http://www.merck-chemicals.com/lcd-emerging-technologies .
  22. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).
  23. M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
    [CrossRef]
  24. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1994).

2012

J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012).
[CrossRef]

2011

J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Biomacromolecules 44, 344–348 (2011).
[CrossRef]

2010

G. Goubert and T. V. Galstian, “Light controlled capillarity of liquid crystals on photo anisotropic surfaces,” Mol. Cryst. Liq. Cryst. 526, 46–57 (2010).
[CrossRef]

S. Bassene and T. Galstian, “Coherent recovery of the degree of polarization of light propagating in random anisotropy media,” Opt. Lett. 35, 3294–3296 (2010).
[CrossRef]

2009

2006

2005

M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
[CrossRef]

2004

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

2002

D. Dumont, T.V. Galstian, S. Senkow, and A. M. Ritcey, “Liquid crystal photoalignment using new photoisomerisable Langmuir–Blodgett films,” Mol. Cryst. Liq. Cryst. 375, 341–352 (2002).
[CrossRef]

1998

S. J. Cox, V. Yu. Reshetnyak, and T. J. Sluckin, “Effective medium theory of light scattering in polymer dispersed liquid crystal films,” J. Phys. D 31, 1611–1625 (1998).
[CrossRef]

H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
[CrossRef]

1996

C. Snively, P. Y. Chen, R. A. Palmer, and J. L. Koenig, “Stabilization of polymer dispersed liquid crystal systems using surface active agents,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 289, 11–23 (1996).
[CrossRef]

L. Bouteiller and P. Le Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).
[CrossRef]

1995

P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 261, 383–392 (1995).
[CrossRef]

G. P. Crawford, A. Scharkowski, Y. K. Fung, and J. W. Doane, “Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix,” Phys. Rev. E 52, R1273–R1276 (1995).
[CrossRef]

1994

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological investigation of UV-curable polymer-dispersed liquid-crystal (PDLC) materials,” Chem. Mater. 6, 1726–1736 (1994).
[CrossRef]

1990

R. A. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

1988

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Amundson, K. R.

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological investigation of UV-curable polymer-dispersed liquid-crystal (PDLC) materials,” Chem. Mater. 6, 1726–1736 (1994).
[CrossRef]

Asatryan, K.

Bassene, S.

Bédard-Arcand, J.-P.

J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012).
[CrossRef]

J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Biomacromolecules 44, 344–348 (2011).
[CrossRef]

Blinov, L. M.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1994).

Boamfa, M. I.

M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
[CrossRef]

Bouteiller, L.

L. Bouteiller and P. Le Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).
[CrossRef]

Chen, P. Y.

C. Snively, P. Y. Chen, R. A. Palmer, and J. L. Koenig, “Stabilization of polymer dispersed liquid crystal systems using surface active agents,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 289, 11–23 (1996).
[CrossRef]

Chigrinov, V.

Chigrinov, V. G.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1994).

Choi, S.-W.

S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .

Cox, S. J.

S. J. Cox, V. Yu. Reshetnyak, and T. J. Sluckin, “Effective medium theory of light scattering in polymer dispersed liquid crystal films,” J. Phys. D 31, 1611–1625 (1998).
[CrossRef]

Crawford, G. P.

G. P. Crawford, A. Scharkowski, Y. K. Fung, and J. W. Doane, “Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix,” Phys. Rev. E 52, R1273–R1276 (1995).
[CrossRef]

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries (Taylor & Francis, 1996).

Davis, D. D.

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological investigation of UV-curable polymer-dispersed liquid-crystal (PDLC) materials,” Chem. Mater. 6, 1726–1736 (1994).
[CrossRef]

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).

Doane, J. W.

G. P. Crawford, A. Scharkowski, Y. K. Fung, and J. W. Doane, “Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix,” Phys. Rev. E 52, R1273–R1276 (1995).
[CrossRef]

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Drzaic, P. S.

P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 261, 383–392 (1995).
[CrossRef]

Dumont, D.

D. Dumont, T.V. Galstian, S. Senkow, and A. M. Ritcey, “Liquid crystal photoalignment using new photoisomerisable Langmuir–Blodgett films,” Mol. Cryst. Liq. Cryst. 375, 341–352 (2002).
[CrossRef]

Fung, Y. K.

G. P. Crawford, A. Scharkowski, Y. K. Fung, and J. W. Doane, “Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix,” Phys. Rev. E 52, R1273–R1276 (1995).
[CrossRef]

Furue, H.

H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
[CrossRef]

Galstian, T.

Galstian, T. V.

G. Goubert and T. V. Galstian, “Light controlled capillarity of liquid crystals on photo anisotropic surfaces,” Mol. Cryst. Liq. Cryst. 526, 46–57 (2010).
[CrossRef]

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

Galstian, T.V.

D. Dumont, T.V. Galstian, S. Senkow, and A. M. Ritcey, “Liquid crystal photoalignment using new photoisomerisable Langmuir–Blodgett films,” Mol. Cryst. Liq. Cryst. 375, 341–352 (2002).
[CrossRef]

Golemme, A.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Goubert, G.

G. Goubert and T. V. Galstian, “Light controlled capillarity of liquid crystals on photo anisotropic surfaces,” Mol. Cryst. Liq. Cryst. 526, 46–57 (2010).
[CrossRef]

Hasebe, H.

H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
[CrossRef]

Hikmet, R. A.

R. A. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

Iimure, Y.

H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
[CrossRef]

Jo, S. I.

S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .

Kim, J.-H.

S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .

Kim, Y.-K.

S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .

Kirilyuk, A.

M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
[CrossRef]

Kobayashi, S.

H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
[CrossRef]

Koenig, J. L.

C. Snively, P. Y. Chen, R. A. Palmer, and J. L. Koenig, “Stabilization of polymer dispersed liquid crystal systems using surface active agents,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 289, 11–23 (1996).
[CrossRef]

Lazarenko, S. V.

M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
[CrossRef]

Le Barny, P.

L. Bouteiller and P. Le Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).
[CrossRef]

Lee, Y.-J.

S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .

Lovinger, A. J.

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological investigation of UV-curable polymer-dispersed liquid-crystal (PDLC) materials,” Chem. Mater. 6, 1726–1736 (1994).
[CrossRef]

Palmer, R. A.

C. Snively, P. Y. Chen, R. A. Palmer, and J. L. Koenig, “Stabilization of polymer dispersed liquid crystal systems using surface active agents,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 289, 11–23 (1996).
[CrossRef]

Presnyakov, V.

Presnyakov, V. V.

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).

Rasing, T.

M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
[CrossRef]

Reshetnyak, V. Yu.

S. J. Cox, V. Yu. Reshetnyak, and T. J. Sluckin, “Effective medium theory of light scattering in polymer dispersed liquid crystal films,” J. Phys. D 31, 1611–1625 (1998).
[CrossRef]

Ritcey, A. M.

D. Dumont, T.V. Galstian, S. Senkow, and A. M. Ritcey, “Liquid crystal photoalignment using new photoisomerisable Langmuir–Blodgett films,” Mol. Cryst. Liq. Cryst. 375, 341–352 (2002).
[CrossRef]

Scharkowski, A.

G. P. Crawford, A. Scharkowski, Y. K. Fung, and J. W. Doane, “Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix,” Phys. Rev. E 52, R1273–R1276 (1995).
[CrossRef]

Senkow, S.

D. Dumont, T.V. Galstian, S. Senkow, and A. M. Ritcey, “Liquid crystal photoalignment using new photoisomerisable Langmuir–Blodgett films,” Mol. Cryst. Liq. Cryst. 375, 341–352 (2002).
[CrossRef]

Sluckin, T. J.

S. J. Cox, V. Yu. Reshetnyak, and T. J. Sluckin, “Effective medium theory of light scattering in polymer dispersed liquid crystal films,” J. Phys. D 31, 1611–1625 (1998).
[CrossRef]

Snively, C.

C. Snively, P. Y. Chen, R. A. Palmer, and J. L. Koenig, “Stabilization of polymer dispersed liquid crystal systems using surface active agents,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 289, 11–23 (1996).
[CrossRef]

Takatsu, H.

H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
[CrossRef]

Tuchin, V. V.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

Vermolen, E. C. M.

M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
[CrossRef]

West, J. L.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Whitehead, J. B.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Wu, B.-G.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

Yoon, A. Ra.

S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .

Zumer, S.

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries (Taylor & Francis, 1996).

Adv. Mater.

M. I. Boamfa, S. V. Lazarenko, E. C. M. Vermolen, A. Kirilyuk, and T. Rasing, “Magnetic field alignment of liquid crystals for fast display applications,” Adv. Mater. 17, 610–614 (2005).
[CrossRef]

Biomacromolecules

J.-P. Bédard-Arcand and T. Galstian, “Self-organization of liquid-crystal and reactive-mesogen into 2D surface-stabilized structures,” Biomacromolecules 44, 344–348 (2011).
[CrossRef]

Chem. Mater.

A. J. Lovinger, K. R. Amundson, and D. D. Davis, “Morphological investigation of UV-curable polymer-dispersed liquid-crystal (PDLC) materials,” Chem. Mater. 6, 1726–1736 (1994).
[CrossRef]

J. Appl. Phys.

R. A. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

J. Phys. D

S. J. Cox, V. Yu. Reshetnyak, and T. J. Sluckin, “Effective medium theory of light scattering in polymer dispersed liquid crystal films,” J. Phys. D 31, 1611–1625 (1998).
[CrossRef]

Liq. Cryst.

L. Bouteiller and P. Le Barny, “Polymer-dispersed liquid crystals: preparation, operation and application,” Liq. Cryst. 21, 157–174 (1996).
[CrossRef]

Mol. Cryst. Liq. Cryst.

J. W. Doane, A. Golemme, J. L. West, J. B. Whitehead, and B.-G. Wu, “Polymer dispersed liquid crystals for display application,” Mol. Cryst. Liq. Cryst. 165, 511–532 (1988).
[CrossRef]

J.-P. Bédard-Arcand and T. Galstian, “Surface-polymer stabilized liquid crystals,” Mol. Cryst. Liq. Cryst. 560, 170–182 (2012).
[CrossRef]

D. Dumont, T.V. Galstian, S. Senkow, and A. M. Ritcey, “Liquid crystal photoalignment using new photoisomerisable Langmuir–Blodgett films,” Mol. Cryst. Liq. Cryst. 375, 341–352 (2002).
[CrossRef]

G. Goubert and T. V. Galstian, “Light controlled capillarity of liquid crystals on photo anisotropic surfaces,” Mol. Cryst. Liq. Cryst. 526, 46–57 (2010).
[CrossRef]

V. V. Presnyakov and T. V. Galstian, “Light polarizer based on anisotropic nematic gel with electrically controlled anisotropy of scattering,” Mol. Cryst. Liq. Cryst. 413, 545–551 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol. A

H. Furue, Y. Iimure, H. Hasebe, H. Takatsu, and S. Kobayashi, “The effect of polymer stabilization on the alignment structure of surface-stabilized ferroelectric liquid crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 317, 259–271 (1998).
[CrossRef]

C. Snively, P. Y. Chen, R. A. Palmer, and J. L. Koenig, “Stabilization of polymer dispersed liquid crystal systems using surface active agents,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 289, 11–23 (1996).
[CrossRef]

P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. Sci. Technol. A 261, 383–392 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

G. P. Crawford, A. Scharkowski, Y. K. Fung, and J. W. Doane, “Internal surface, orientational order, and distribution of a polymer network in a liquid crystal matrix,” Phys. Rev. E 52, R1273–R1276 (1995).
[CrossRef]

Other

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE, 2007).

G. P. Crawford and S. Zumer, Liquid Crystals in Complex Geometries (Taylor & Francis, 1996).

S.-W. Choi, S. I. Jo, Y.-J. Lee, Y.-K. Kim, A. Ra. Yoon, and J.-H. Kim, “Pretilt angle control of the liquid crystal by using the reactive mesogen,” in Proceedings of the Korea Liquid Crystal Conference (2010), Vol. 12, pp. 101–103. http://ddlab.hanyang.ac.kr/inner_image/publication/proceeding/184.pdf .

Merck Product Specifications, http://www.merck-chemicals.com/lcd-emerging-technologies .

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1995).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Side-view schematic representation of the S-PSLC cell and drop fill manufacturing technique. ITO, indium tin oxide transparent electrode; PI, polyimide; RM, reactive mesogen; LC, liquid crystal; PA, peripheral adhesive.

Fig. 2.
Fig. 2.

Time dependence of the transmitted (through the polarimetric setup containing the sample) probe’s power during the application (to the cell) of electric and magnetic fields as well as during the cell’s UV photo polymerization (see the text for details).

Fig. 3.
Fig. 3.

Angular distribution of scattered light power for a typical cell of S-PSLC that was UV photo polymerized in the presence of an electric field of 50 V.

Fig. 4.
Fig. 4.

Ballistic transmission’s electro-optic modulation and its polarization dependence for the S-PSLC cell that was UV photo polymerized in the presence of an electric field of 50 V (at 1 kHz) and a DC magnetic field of 2T. A voltage of U=110V is applied to the cell initially. This voltage is then switched off (U=0V) at approximately t=0.7s.

Fig. 5.
Fig. 5.

Ballistic transmission’s electro-optic modulation and its polarization independence for the S-PSLC cell that was UV photo polymerized in the presence of an electric field only. A voltage of U=110V (at 1 kHz) is applied to the cell initially. This voltage is then switched off (U=0V) at approximately t=0.7s.

Metrics