Abstract

When the eye’s higher-order aberrations are measured and reported, as important as the magnitude of each individual term are the possible combinations between them, which may change the overall retinal image quality and therefore visual performance. We have evaluated the relationships among different aberration terms in the human eye—coma, trefoil, and spherical aberration—and their effects on both retinal image quality and visual acuity (VA). In a group of normal young subjects with normal to excellent vision, we measured the eye’s aberrations and high contrast VA under natural conditions after carefully correcting defocus and astigmatism. Among the different combinations of aberration terms, we only found a significant negative correlation (r2=0.30) between the vertical coefficients of trefoil C(3,3) and coma C(3,1). This is a positive coupling that produces a better retinal image quality than any of the other possible combinations of these terms. However, this improvement in image quality is limited by the presence of other aberrations. Only in a few eyes that presented the larger values of coupled vertical trefoil and coma appeared a significant improvement of image quality. Although we did not find a clear correction between the coma-trefoil vertical coupling and VA, most eyes with large amounts of aberrations (RMS>0.4μm) have these terms coupled, keeping decimal acuity around 1.2 or higher.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  2. J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
    [CrossRef]
  3. M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
    [CrossRef]
  4. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  5. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vis. Res. 46, 3009–3016 (2006).
    [CrossRef]
  6. S. Bará, P. Prado, J. Arines, and J. Ares, “Estimation-induced correlations of the Zernike coefficients of the eye aberration,” Opt. Lett. 31, 2646–2648 (2006).
    [CrossRef]
  7. P. Artal, A. Guriao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
    [CrossRef]
  8. J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
    [CrossRef]
  9. P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
    [CrossRef]
  10. P. Artal and J. Tabernero, “The eyes aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
    [CrossRef]
  11. J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
    [CrossRef]
  12. E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom.Vis. Sci. 83, 672–681 (2006).
    [CrossRef]
  13. E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
    [CrossRef]
  14. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
    [CrossRef]
  15. L. Chen, P. Artal, D. G. Hartnell, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 1–9 (2007).
    [CrossRef]
  16. E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Investig. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
    [CrossRef]
  17. P. M. Prieto, F. Vargas-Martín, S. Goeltz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A17, 1388–1398 (2000).
    [CrossRef]
  18. American National Standard for Ophthalmics, “Methods for reporting optical aberrations of the eye,” Tech. Rep. ANSI Z80.28 (American National Standards Institute, 2004).
  19. J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A24, 3274–3283 (2007).
    [CrossRef]
  20. E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 1–17 (2010).
    [CrossRef]
  21. E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80, 106–114 (2003).
    [CrossRef]

2010 (1)

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 1–17 (2010).
[CrossRef]

2008 (2)

P. Artal and J. Tabernero, “The eyes aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
[CrossRef]

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Investig. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[CrossRef]

2007 (2)

L. Chen, P. Artal, D. G. Hartnell, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 1–9 (2007).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A24, 3274–3283 (2007).
[CrossRef]

2006 (4)

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom.Vis. Sci. 83, 672–681 (2006).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vis. Res. 46, 3009–3016 (2006).
[CrossRef]

S. Bará, P. Prado, J. Arines, and J. Ares, “Estimation-induced correlations of the Zernike coefficients of the eye aberration,” Opt. Lett. 31, 2646–2648 (2006).
[CrossRef]

2004 (3)

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

2003 (1)

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80, 106–114 (2003).
[CrossRef]

2002 (4)

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

2001 (2)

P. Artal, A. Guriao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

2000 (1)

P. M. Prieto, F. Vargas-Martín, S. Goeltz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A17, 1388–1398 (2000).
[CrossRef]

Alcón, E.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Investig. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A24, 3274–3283 (2007).
[CrossRef]

Applegate, R. A.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

Ares, J.

Arines, J.

Artal, P.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 1–17 (2010).
[CrossRef]

P. Artal and J. Tabernero, “The eyes aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
[CrossRef]

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Investig. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A24, 3274–3283 (2007).
[CrossRef]

L. Chen, P. Artal, D. G. Hartnell, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 1–9 (2007).
[CrossRef]

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom.Vis. Sci. 83, 672–681 (2006).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80, 106–114 (2003).
[CrossRef]

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
[CrossRef]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

P. Artal, A. Guriao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goeltz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A17, 1388–1398 (2000).
[CrossRef]

Bará, S.

Benito, A.

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A24, 3274–3283 (2007).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

Berrio, E.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 1–17 (2010).
[CrossRef]

P. Artal, A. Guriao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Bonin, T.

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
[CrossRef]

Bourdoncle, B.

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
[CrossRef]

Bradley, A.

Burns, S. A.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vis. Res. 46, 3009–3016 (2006).
[CrossRef]

Cagigal, M. P.

Canales, V. F.

Castejón-Mochón, J. F.

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

Chen, L.

L. Chen, P. Artal, D. G. Hartnell, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 1–9 (2007).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Cheng, X.

Cox, I. G.

Fernández, E. J.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Goeltz, S.

P. M. Prieto, F. Vargas-Martín, S. Goeltz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A17, 1388–1398 (2000).
[CrossRef]

González, C.

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
[CrossRef]

Guirao, A.

Guriao, A.

P. Artal, A. Guriao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

Hartnell, D. G.

L. Chen, P. Artal, D. G. Hartnell, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 1–9 (2007).
[CrossRef]

Hong, X.

Howland, H. C.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

Kelly, J. E.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

López-Gil, N.

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[CrossRef]

Manzanera, S.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Marcos, S.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vis. Res. 46, 3009–3016 (2006).
[CrossRef]

Marsack, J. D.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

McLellan, J. S.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vis. Res. 46, 3009–3016 (2006).
[CrossRef]

Mihashi, T.

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

Porter, J.

Prado, P.

Prieto, P. M.

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vis. Res. 46, 3009–3016 (2006).
[CrossRef]

M. P. Cagigal, V. F. Canales, J. F. Castejón-Mochón, P. M. Prieto, N. López-Gil, and P. Artal, “Statistical description of the wave front aberration in the human eye,” Opt. Lett. 27, 37–39 (2002).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goeltz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A17, 1388–1398 (2000).
[CrossRef]

Singer, B.

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

Tabernero, J.

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 1–17 (2010).
[CrossRef]

P. Artal and J. Tabernero, “The eyes aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A24, 3274–3283 (2007).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

Thibos, L. N.

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Vargas-Martín, F.

P. M. Prieto, F. Vargas-Martín, S. Goeltz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A17, 1388–1398 (2000).
[CrossRef]

Villegas, E. A.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Investig. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[CrossRef]

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom.Vis. Sci. 83, 672–681 (2006).
[CrossRef]

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80, 106–114 (2003).
[CrossRef]

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
[CrossRef]

Williams, D. R.

L. Chen, P. Artal, D. G. Hartnell, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 1–9 (2007).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

P. Artal, A. Guriao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

Investig. Ophthalmol. Vis. Sci. (1)

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Investig. Ophthalmol. Vis. Sci. 49, 4688–4696 (2008).
[CrossRef]

J. Opt. Soc. Am. (2)

P. M. Prieto, F. Vargas-Martín, S. Goeltz, and P. Artal, “Analysis of the performance of the Hartmann-Shack sensor in the human eye,” J. Opt. Soc. Am. A17, 1388–1398 (2000).
[CrossRef]

J. Tabernero, A. Benito, E. Alcón, and P. Artal, “Mechanism of compensation of aberrations in the human eye,” J. Opt. Soc. Am. A24, 3274–3283 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Vision (7)

P. Artal, A. Guriao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vision 1, 1–8 (2001).
[CrossRef]

J. E. Kelly, T. Mihashi, and H. C. Howland, “Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye,” J. Vision 4, 262–271 (2004).
[CrossRef]

P. Artal, A. Benito, and J. Tabernero, “The human eye is an example of robust optical design,” J. Vision 6, 1–7 (2006).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, “Neural adaptation for the eye’s optical aberrations,” J. Vision 4, 281–287 (2004).
[CrossRef]

L. Chen, P. Artal, D. G. Hartnell, and D. R. Williams, “Neural compensation for the best aberration correction,” J. Vision 7, 1–9 (2007).
[CrossRef]

J. D. Marsack, L. N. Thibos, and R. A. Applegate, “Metrics of optical quality derived from wave aberrations predict visual performance,” J. Vision 4, 322–328 (2004).
[CrossRef]

E. Berrio, J. Tabernero, and P. Artal, “Optical aberrations and alignment of the eye with age,” J. Vision 10, 1–17 (2010).
[CrossRef]

Nat. Photon. (1)

P. Artal and J. Tabernero, “The eyes aplanatic answer,” Nat. Photon. 2, 586–589 (2008).
[CrossRef]

Opt. Lett. (2)

Optom. Vis. Sci. (1)

E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80, 106–114 (2003).
[CrossRef]

Optom.Vis. Sci. (2)

E. A. Villegas and P. Artal, “Visual acuity and optical parameters in progressive-power lenses,” Optom.Vis. Sci. 83, 672–681 (2006).
[CrossRef]

E. A. Villegas, C. González, B. Bourdoncle, T. Bonin, and P. Artal, “Correlation between optical and psychophysical parameters as function of defocus,” Optom.Vis. Sci. 79, 60–67 (2002).
[CrossRef]

Vis. Res. (2)

J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, “Effects of interactions among wave aberrations on optical image quality,” Vis. Res. 46, 3009–3016 (2006).
[CrossRef]

J. F. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, “Ocular wave-front statistics in a normal young population,” Vis. Res. 42, 1611–1617 (2002).
[CrossRef]

Other (1)

American National Standard for Ophthalmics, “Methods for reporting optical aberrations of the eye,” Tech. Rep. ANSI Z80.28 (American National Standards Institute, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Polar plot of the orientation of trefoil (gray circles) and coma (white circles) as a function of modulus values of these aberrations, and confidence ellipses for trefoil (solid line) and coma (dashed line).

Fig. 2.
Fig. 2.

Relationship between (a) horizontal terms of trefoil C(3,3) and coma C(3,1), (b) spherical aberration, C(4,0), with vertical coma, C(3,1), and trefoil, C(3,3), (c) spherical aberration, C(4,0), with horizontal coma, C(3,1), and trefoil, C(3,3). In all these graphs, R-squared <0.04, p-values >0.11.

Fig. 3.
Fig. 3.

Correlation between vertical terms of trefoil C(3,3) and coma C(3,1). Squares include vertical terms of trefoil and coma opposite in sign and higher than 0.1 μm.

Fig. 4.
Fig. 4.

Simulated examples of wave-aberrations and associated PSF for (a) predominant combination between vertical terms of ocular trefoil and coma and (b) for coma with opposite orientation.

Fig. 5.
Fig. 5.

Retinal image quality (Strehl ratio) as a function of total amount of aberrations (RMS) of all tested eyes, with vertical terms of coma or trefoil below 0.1 μm (black circles), with terms over 0.1 μm: coupled (white squares) and uncoupled (gray triangles).

Fig. 6.
Fig. 6.

VA as a function of RMS of all tested eyes, with vertical terms of coma or trefoil below 0.1 μm (black circles), with terms over 0.1 μm: coupled (white squares) and uncoupled (gray triangles).

Fig. 7.
Fig. 7.

Wavefront aberration maps and associated PSFs of three representative eyes (optical and VA data in Table 1).

Fig. 8.
Fig. 8.

CF (ratio between natural image quality and that calculated with coma rotated to the opposite direction) with respect to the VA.

Tables (1)

Tables Icon

Table 1. Wavefront Aberrations, Optical Parameters (RMS and Strehl Ratio) and VA of Three Representative Eyes with Different Scenarios of Combination Between Coefficients C(3,3) and Coma C(3,1)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CF=lnSROPPOSITE_COMAlnSRNATURALCF>1POSITIVE COUPLINGCF<1NEGATIVE COUPLING.

Metrics