Abstract

The design of an arbitrary n-sided irregular polygonal transformed media is introduced in this paper. The generalized proposed optical transformation is based on a very simple Y-intercept transformation in the Cartesian coordinate system. In this method, the arbitrary shaped transformed media is decomposed into triangular segments. The permittivity and permeability tensors of the triangular segments are presented in an explicit closed-form expression. Based on the proposed method, the arbitrary irregular cloak, concentrator, superscatterer, and superabsorber are designed. Moreover, some simulations have been performed for verification of the proposed method. The numerical simulations prove the capability and universality of the proposed design method.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
    [CrossRef]
  2. Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
    [CrossRef]
  3. D. H. Kwon and D. H. Werner, “Transformation electromagnetic, An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52, 24–46 (2010).
    [CrossRef]
  4. X. X. Cheng, H. S. Chen, B. I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
    [CrossRef]
  5. B. L. Zhang, H. S. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagn. Res. 97, 407–416 (2009).
    [CrossRef]
  6. T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).
  7. Q. Cheng, W. X. Jiang, and T. J. Cui, “Investigations of the electromagnetic properties of three-dimensional arbitrarily shaped cloaks,” Prog. Electromagn. Res. 94, 105–117 (2009).
    [CrossRef]
  8. J. A. Silva-Macedo, M. A. Romero, and B. H. V. Borges, “An extended FDTD method for the analysis of electromagnetic field rotations and cloaking devices,” Prog. Electromagn. Res. 87, 186–196 (2008).
    [CrossRef]
  9. A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating PEMC at perturbed void region,” Prog. Electromagn. Res. M 21, 61–76 (2011).
    [CrossRef]
  10. S. Taravati and A. Abdolali, “A new three-dimensional conical grounded plane cloak with homogeneous materials,” Prog. Electromagn. Res. M 19, 91–104 (2011).
    [CrossRef]
  11. S. H. Sedighy and M. Khalalaj Amirhosseini “Design of an arbitrary shaped invisible cloak using coordinate transformation,” Int. Rev. Model. Simul. 3, 1167–1171 (2010).
  12. J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson’s equation,” Prog. Electromagn. Res. M 9, 177–184 (2009).
    [CrossRef]
  13. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
    [CrossRef]
  14. J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
    [CrossRef]
  15. T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
    [CrossRef]
  16. J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
    [CrossRef]
  17. Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
    [CrossRef]
  18. W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
    [CrossRef]
  19. W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
    [CrossRef]
  20. J. Zhang, Y. Luo, H. Chen, and B. I. Wu, “Cloak of a arbitrary shape,” J. Opt. Soc. Am. B 25, 1776–1779 (2008).
    [CrossRef]
  21. Q. Wu, K. Zhang, F. Y. Meng, and L.-W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
    [CrossRef]
  22. C. Li, K. Yao, and F. Li, “Medium parameters and electromagnetic characteristics of arbitrary polygon cloaks,” IET Microw. Antennas Propag. 4, 1672–1679 (2010).
    [CrossRef]
  23. X. Zang and C. Jiang, “Two-dimensional elliptical electromagnetic superscatterer and superabsorber,” Opt. Express 18, 6891–6899 (2010).
    [CrossRef]
  24. J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
    [CrossRef]
  25. C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
    [CrossRef]
  26. H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
    [CrossRef]

2011 (2)

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating PEMC at perturbed void region,” Prog. Electromagn. Res. M 21, 61–76 (2011).
[CrossRef]

S. Taravati and A. Abdolali, “A new three-dimensional conical grounded plane cloak with homogeneous materials,” Prog. Electromagn. Res. M 19, 91–104 (2011).
[CrossRef]

2010 (7)

S. H. Sedighy and M. Khalalaj Amirhosseini “Design of an arbitrary shaped invisible cloak using coordinate transformation,” Int. Rev. Model. Simul. 3, 1167–1171 (2010).

D. H. Kwon and D. H. Werner, “Transformation electromagnetic, An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52, 24–46 (2010).
[CrossRef]

C. Li, K. Yao, and F. Li, “Medium parameters and electromagnetic characteristics of arbitrary polygon cloaks,” IET Microw. Antennas Propag. 4, 1672–1679 (2010).
[CrossRef]

J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
[CrossRef]

C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
[CrossRef]

T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).

X. Zang and C. Jiang, “Two-dimensional elliptical electromagnetic superscatterer and superabsorber,” Opt. Express 18, 6891–6899 (2010).
[CrossRef]

2009 (7)

Q. Cheng, W. X. Jiang, and T. J. Cui, “Investigations of the electromagnetic properties of three-dimensional arbitrarily shaped cloaks,” Prog. Electromagn. Res. 94, 105–117 (2009).
[CrossRef]

Q. Wu, K. Zhang, F. Y. Meng, and L.-W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

J. Ng, H. Y. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009).
[CrossRef]

X. X. Cheng, H. S. Chen, B. I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

B. L. Zhang, H. S. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagn. Res. 97, 407–416 (2009).
[CrossRef]

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
[CrossRef]

J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson’s equation,” Prog. Electromagn. Res. M 9, 177–184 (2009).
[CrossRef]

2008 (9)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

J. Zhang, Y. Luo, H. Chen, and B. I. Wu, “Cloak of a arbitrary shape,” J. Opt. Soc. Am. B 25, 1776–1779 (2008).
[CrossRef]

T. Yang, H. Y. Chen, X. D. Luo, and H. R. Ma, “Superscatterer: enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008).
[CrossRef]

J. A. Silva-Macedo, M. A. Romero, and B. H. V. Borges, “An extended FDTD method for the analysis of electromagnetic field rotations and cloaking devices,” Prog. Electromagn. Res. 87, 186–196 (2008).
[CrossRef]

2006 (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Abdolali, A.

S. Taravati and A. Abdolali, “A new three-dimensional conical grounded plane cloak with homogeneous materials,” Prog. Electromagn. Res. M 19, 91–104 (2011).
[CrossRef]

Ahmed, S.

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating PEMC at perturbed void region,” Prog. Electromagn. Res. M 21, 61–76 (2011).
[CrossRef]

Argyropoulos, C.

T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).

Borges, B. H. V.

J. A. Silva-Macedo, M. A. Romero, and B. H. V. Borges, “An extended FDTD method for the analysis of electromagnetic field rotations and cloaking devices,” Prog. Electromagn. Res. 87, 186–196 (2008).
[CrossRef]

Cai, G.

C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
[CrossRef]

Cao, X. Y.

J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson’s equation,” Prog. Electromagn. Res. M 9, 177–184 (2009).
[CrossRef]

Chan, C. T.

Chen, H.

Chen, H. S.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
[CrossRef]

X. X. Cheng, H. S. Chen, B. I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

B. L. Zhang, H. S. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagn. Res. 97, 407–416 (2009).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

Chen, H. Y.

Cheng, Q.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Investigations of the electromagnetic properties of three-dimensional arbitrarily shaped cloaks,” Prog. Electromagn. Res. 94, 105–117 (2009).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

Cheng, X. X.

X. X. Cheng, H. S. Chen, B. I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

Chin, J. Y.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

Cui, T. J.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Investigations of the electromagnetic properties of three-dimensional arbitrarily shaped cloaks,” Prog. Electromagn. Res. 94, 105–117 (2009).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Cummer, S. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Duan, Z. Y.

Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
[CrossRef]

Huang, M.

J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
[CrossRef]

C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
[CrossRef]

Jiang, C.

Jiang, W. X.

Q. Cheng, W. X. Jiang, and T. J. Cui, “Investigations of the electromagnetic properties of three-dimensional arbitrarily shaped cloaks,” Prog. Electromagn. Res. 94, 105–117 (2009).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Kallos, E.

T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).

Khalalaj Amirhosseini, M.

S. H. Sedighy and M. Khalalaj Amirhosseini “Design of an arbitrary shaped invisible cloak using coordinate transformation,” Int. Rev. Model. Simul. 3, 1167–1171 (2010).

Kong, F. M.

Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
[CrossRef]

Kong, J. A.

X. X. Cheng, H. S. Chen, B. I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
[CrossRef]

Kwon, D. H.

D. H. Kwon and D. H. Werner, “Transformation electromagnetic, An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52, 24–46 (2010).
[CrossRef]

Li, C.

C. Li, K. Yao, and F. Li, “Medium parameters and electromagnetic characteristics of arbitrary polygon cloaks,” IET Microw. Antennas Propag. 4, 1672–1679 (2010).
[CrossRef]

Li, F.

C. Li, K. Yao, and F. Li, “Medium parameters and electromagnetic characteristics of arbitrary polygon cloaks,” IET Microw. Antennas Propag. 4, 1672–1679 (2010).
[CrossRef]

Li, L.-W.

Q. Wu, K. Zhang, F. Y. Meng, and L.-W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Li, Z.

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

Liu, R.

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Liu, T.

J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson’s equation,” Prog. Electromagn. Res. M 9, 177–184 (2009).
[CrossRef]

Luo, X. D.

Luo, Y.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
[CrossRef]

J. Zhang, Y. Luo, H. Chen, and B. I. Wu, “Cloak of a arbitrary shape,” J. Opt. Soc. Am. B 25, 1776–1779 (2008).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

Ma, H.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Ma, H. R.

Ma, J. J.

J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson’s equation,” Prog. Electromagn. Res. M 9, 177–184 (2009).
[CrossRef]

Meng, F. Y.

Q. Wu, K. Zhang, F. Y. Meng, and L.-W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Naqvi, Q. A.

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating PEMC at perturbed void region,” Prog. Electromagn. Res. M 21, 61–76 (2011).
[CrossRef]

Ng, J.

Pendry, J. B.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Peng, J.

C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
[CrossRef]

J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
[CrossRef]

Qasim, F.

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating PEMC at perturbed void region,” Prog. Electromagn. Res. M 21, 61–76 (2011).
[CrossRef]

Qu, S.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Rahm, M.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Ran, L.

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

Ran, L. X.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
[CrossRef]

Roberts, D. A.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Romero, M. A.

J. A. Silva-Macedo, M. A. Romero, and B. H. V. Borges, “An extended FDTD method for the analysis of electromagnetic field rotations and cloaking devices,” Prog. Electromagn. Res. 87, 186–196 (2008).
[CrossRef]

Schurig, D.

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Sedighy, S. H.

S. H. Sedighy and M. Khalalaj Amirhosseini “Design of an arbitrary shaped invisible cloak using coordinate transformation,” Int. Rev. Model. Simul. 3, 1167–1171 (2010).

Shahzad, A.

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating PEMC at perturbed void region,” Prog. Electromagn. Res. M 21, 61–76 (2011).
[CrossRef]

Silva-Macedo, J. A.

J. A. Silva-Macedo, M. A. Romero, and B. H. V. Borges, “An extended FDTD method for the analysis of electromagnetic field rotations and cloaking devices,” Prog. Electromagn. Res. 87, 186–196 (2008).
[CrossRef]

Smith, D. R.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Taravati, S.

S. Taravati and A. Abdolali, “A new three-dimensional conical grounded plane cloak with homogeneous materials,” Prog. Electromagn. Res. M 19, 91–104 (2011).
[CrossRef]

Wang, J.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Wei, S.

T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).

Wenxuan, T.

T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).

Werner, D. H.

D. H. Kwon and D. H. Werner, “Transformation electromagnetic, An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52, 24–46 (2010).
[CrossRef]

Wu, B. I.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
[CrossRef]

X. X. Cheng, H. S. Chen, B. I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

B. L. Zhang, H. S. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagn. Res. 97, 407–416 (2009).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

J. Zhang, Y. Luo, H. Chen, and B. I. Wu, “Cloak of a arbitrary shape,” J. Opt. Soc. Am. B 25, 1776–1779 (2008).
[CrossRef]

Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
[CrossRef]

Wu, Q.

Q. Wu, K. Zhang, F. Y. Meng, and L.-W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Xi, S.

Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

Xu, Z.

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Yang, C.

C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
[CrossRef]

J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
[CrossRef]

Yang, H.

T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).

Yang, J.

J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
[CrossRef]

C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
[CrossRef]

Yang, T.

Yang, X. M.

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Yao, K.

C. Li, K. Yao, and F. Li, “Medium parameters and electromagnetic characteristics of arbitrary polygon cloaks,” IET Microw. Antennas Propag. 4, 1672–1679 (2010).
[CrossRef]

Yu, K. M.

J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson’s equation,” Prog. Electromagn. Res. M 9, 177–184 (2009).
[CrossRef]

Zang, X.

Zhang, B. L.

B. L. Zhang, H. S. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagn. Res. 97, 407–416 (2009).
[CrossRef]

Zhang, J.

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

J. Zhang, Y. Luo, H. Chen, and B. I. Wu, “Cloak of a arbitrary shape,” J. Opt. Soc. Am. B 25, 1776–1779 (2008).
[CrossRef]

Zhang, J. J.

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
[CrossRef]

Zhang, K.

Q. Wu, K. Zhang, F. Y. Meng, and L.-W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Zong, R.

J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

W. X. Jiang, T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, “Design of arbitrarily shaped concentrators based on conformally transformation of nonuniform rational B-spline surfaces,” Appl. Phys. Lett. 92, 264101 (2008).
[CrossRef]

Comput. Mater. Sci. (1)

C. Yang, J. Yang, M. Huang, J. Peng, and G. Cai, “Two-dimensional electromagnetic superscatterer with arbitrary geometries,” Comput. Mater. Sci. 49, 820–825 (2010).
[CrossRef]

Energies (1)

J. Yang, M. Huang, C. Yang, J. Peng, and R. Zong, “Metamaterial electromagnetic superabsorber with arbitrary geometries,” Energies 3, 1335–1343 (2010).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

D. H. Kwon and D. H. Werner, “Transformation electromagnetic, An overview of the theory and applications,” IEEE Antennas Propag. Mag. 52, 24–46 (2010).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

T. Wenxuan, C. Argyropoulos, E. Kallos, S. Wei, and H. Yang, “Discrete coordinate transformation for designing all-dielectric flat antennas,” IEEE Trans. Antennas Propag. 58, 3795–3804 (2010).

IET Microw. Antennas Propag. (1)

C. Li, K. Yao, and F. Li, “Medium parameters and electromagnetic characteristics of arbitrary polygon cloaks,” IET Microw. Antennas Propag. 4, 1672–1679 (2010).
[CrossRef]

Int. Rev. Model. Simul. (1)

S. H. Sedighy and M. Khalalaj Amirhosseini “Design of an arbitrary shaped invisible cloak using coordinate transformation,” Int. Rev. Model. Simul. 3, 1167–1171 (2010).

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Q. Wu, K. Zhang, F. Y. Meng, and L.-W. Li, “Material parameters characterization for arbitrary N-sided regular polygonal invisible cloak,” J. Phys. D 42, 035408 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Photon. Nanostr. Fundam. Appl. (1)

M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photon. Nanostr. Fundam. Appl. 6, 87–95 (2008).
[CrossRef]

Phys. Rev. E (2)

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, “Analytical design of conformally invisible cloaks for arbitrarily shaped objects,” Phys. Rev. E 77, 066607 (2008).
[CrossRef]

H. Ma, S. Qu, Z. Xu, and J. Wang, “Numerical method for designing approximate cloaks with arbitrary shapes,” Phys. Rev. E 78, 036608 (2008).
[CrossRef]

Prog. Electromagn. Res. (7)

J. Zhang, Y. Luo, S. Xi, H. S. Chen, L. Ran, B. I. Wu, and J. A. Kong, “Directive emission obtained by coordinate transformation,” Prog. Electromagn. Res. 81, 437–446 (2008).
[CrossRef]

Z. Y. Duan, B. I. Wu, J. A. Kong, F. M. Kong, and S. Xi, “Enhancement of radiation properties of a compact planar antenna using transformation media as substrates,” Prog. Electromagn. Res. 83, 375–384 (2008).
[CrossRef]

Q. Cheng, W. X. Jiang, and T. J. Cui, “Investigations of the electromagnetic properties of three-dimensional arbitrarily shaped cloaks,” Prog. Electromagn. Res. 94, 105–117 (2009).
[CrossRef]

J. A. Silva-Macedo, M. A. Romero, and B. H. V. Borges, “An extended FDTD method for the analysis of electromagnetic field rotations and cloaking devices,” Prog. Electromagn. Res. 87, 186–196 (2008).
[CrossRef]

X. X. Cheng, H. S. Chen, B. I. Wu, and J. A. Kong, “Cloak for bianisotropic and moving media,” Prog. Electromagn. Res. 89, 199–212 (2009).
[CrossRef]

B. L. Zhang, H. S. Chen, and B. I. Wu, “Practical limitations of an invisibility cloak,” Prog. Electromagn. Res. 97, 407–416 (2009).
[CrossRef]

Y. Luo, J. J. Zhang, H. S. Chen, B. I. Wu, and L. X. Ran, “Wave and ray analysis of a type of cloak exhibiting magnified and shifted scattering effect,” Prog. Electromagn. Res. 95, 167–178 (2009).
[CrossRef]

Prog. Electromagn. Res. M (3)

A. Shahzad, F. Qasim, S. Ahmed, and Q. A. Naqvi, “Cylindrical invisibility cloak incorporating PEMC at perturbed void region,” Prog. Electromagn. Res. M 21, 61–76 (2011).
[CrossRef]

S. Taravati and A. Abdolali, “A new three-dimensional conical grounded plane cloak with homogeneous materials,” Prog. Electromagn. Res. M 19, 91–104 (2011).
[CrossRef]

J. J. Ma, X. Y. Cao, K. M. Yu, and T. Liu, “Determination the material parameters for arbitrary cloak based on Poisson’s equation,” Prog. Electromagn. Res. M 9, 177–184 (2009).
[CrossRef]

Science (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Transformed media cross section. (a) The cross section of an irregular n-sided polygonal transformed media that is divided into n triangular segments; (b) a unit triangular segment of the transformed media.

Fig. 2.
Fig. 2.

Electric field distribution for 2D polygonal shaped cloaks. (a) A square cloak, (b) a hexagonal cloak, and (c) an octagonal cloak.

Fig. 3.
Fig. 3.

Electric field distribution for 2D star shaped cloak. (a) PEC star shaped without cloak shell, (b) illumination of the star cloak with a TE plane wave in the x direction, and (c) illumination of the star cloak with a TE plane wave in the y direction.

Fig. 4.
Fig. 4.

Electric field distribution for 2D polygonal shaped concentrators. (a) A square concentrator, (b) a hexagonal concentrator, and (c) an octagonal concentrator.

Fig. 5.
Fig. 5.

Electric field distribution for 2D star shaped concentrator. (a) Illumination of the star concentrator with a TE plane wave in the x direction; (b) illumination of the star concentrator with a TE plane wave in the y direction.

Fig. 6.
Fig. 6.

Electric field distribution. (a) A large hexagonal PEC, (b) a small hexagonal PEC with superscatterer shell, (c) a large octagonal PEC, and (d) a small octagonal PEC with superscatterer shell.

Fig. 7.
Fig. 7.

Electric field distribution. (a) A large hexagonal PEC, (b) a small hexagonal PEC with superabsorber shell, (c) a large octagonal PEC, and (d) a small octagonal PEC with superabsorber shell.

Fig. 8.
Fig. 8.

Electric field distribution for 2D arbitrary superabsorber. (a) A large arbitrary four-sided absorber material; (b) a small four-sided arbitrary absorber material with superabsorber shell.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

εr=μr=AATdet(A),
μr=εr=[εxxεxy0εyxεyy000εzz].
y=mx+δ,
δ=f(δ),
δ=ymx.
y=yxx.
x=f(ymx)ymxx,
y=f(ymx)ymxy.
δ=f(δ)=babδ+a0<δ<b.
εxx=((bab+ay(ymx)2)2+(ax(ymx)2)2)/|A|,
εyy=((babamy(ymx)2)2+(bmy(ymx)2)2)/|A|,
εxy=εyx=(babb(myx)(ymx)2+ma2(y2+x2)(ymx)4)/|A|,
|A|=(bab)(bab+aymx).
δ={abδ0δbcacbδbacbabδc.
ε=[10001000(ba)2].
δ=f(δ)=cbba(bδ)+ba<δ<b,
εxx=((g+fy(ymx)2)2+(fx(ymx)2)2)/|A|,
εyy=((gfmx(ymx)2)2+(fmy(ymx)2)2)/|A|,
εxy=εyx=(gf(myx)(ymx)2+mf2(y2+x2)(ymx)4)/|A|,
|A|=g2(fgymx),
δ=f(δ)=b2δaδb.
εxx=(b4(y+mx)2+4b4x2)/D,
εyy=(4m2b4y2+b4(y+mx)2)/D,
εxy=εyx=(2b4(y+mx)(my+x))/D,
D=(4mb4xyb4(y+mx)2)(ymx)6.

Metrics