Abstract

We put forward a theory on the optical force exerted upon a dipolar particle by a stationary and ergodic partially coherent light field. We show through a rigorous analysis that the ensemble averaged electromagnetic force is given in terms of a partial gradient of the space-variable diagonal elements of the coherence tensor. Further, by following this result we characterize the conservative and nonconservative components of this force. In addition, we establish the propagation law for the optical force in terms of the coherence function of light at a diffraction plane. This permits us to evaluate the effect of the degree of coherence on the force components by using the archetypical configuration of Young’s two-aperture diffraction pattern, so often employed to characterize coherence of waves.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription