Abstract

We have analyzed the effectiveness of field-matter integral overlap between target index distribution and local near-fields to assess detection sensitivity of surface plasmon resonance (SPR) biosensors. The correlation of the overlap with sensitivity was clear. An overlap integral defined with lateral electric field intensity produced the highest correlation due to tangential continuity across a boundary. Among the three detection scenarios considered, the correlation for localized SPR sensing was slightly lower than that of thin film-based detection and improved with an increased fill factor in the structure. The results will be useful to maximize the optical signature created by target interactions and to produce highest sensitivity of SPR detection to variations when target or field distribution is not uniform.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126, 79–92 (2005).
    [CrossRef]
  2. C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392(2007).
    [CrossRef]
  3. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
    [CrossRef]
  4. Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
    [CrossRef]
  5. J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
    [CrossRef]
  6. S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
    [CrossRef]
  7. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B 35, 187–191 (1996).
    [CrossRef]
  8. A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
    [CrossRef]
  9. C.-M. Wu and M.-C. Pao, “Sensitivity-tunable optical sensors based on surface plasmon resonance and phase detection,” Opt. Express 12, 3509–3514 (2004).
    [CrossRef]
  10. H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
    [CrossRef]
  11. A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
    [CrossRef]
  12. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
    [CrossRef]
  13. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401–407 (2006).
    [CrossRef]
  14. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007).
    [CrossRef]
  15. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
    [CrossRef]
  16. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007).
    [CrossRef]
  17. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
    [CrossRef]
  18. Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355(2011).
    [CrossRef]
  19. K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027–1034 (2009).
    [CrossRef]
  20. X. D. Hoa, M. Tabrizian, and A. G. Kirk, “Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nano-gratings,” J. Sens. 2009, 713641(2009).
    [CrossRef]
  21. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043–3048 (2009).
    [CrossRef]
  22. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
    [CrossRef]
  23. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
    [CrossRef]
  24. I. Abdulhalim, “Biosensing configurations using guided wave resonant structures,” in NATO Science for Peace and Security Series B: Physics and Biophysics, Optical Waveguide Sensing and Imaging, W. J. Bock, I. Gannot, and S. Tanev, eds. (Springer-Verlag, 2007), pp. 211–228.
  25. A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5, 571–606 (2011).
    [CrossRef]
  26. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nature Methods 5, 591–596 (2008).
    [CrossRef]
  27. M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011).
    [CrossRef]
  28. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
    [CrossRef]
  29. K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, “Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures,” Opt. Lett. 34, 3905–3907 (2009).
    [CrossRef]
  30. A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
    [CrossRef]
  31. S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543–2549 (2007).
    [CrossRef]
  32. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  33. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851(1998).
    [CrossRef]
  34. C. W. Haggans, L. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mounting,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
    [CrossRef]
  35. I. Abdulhalim, “Simplified optical scatterometry for periodic nano-arrays in the quasi-static limit,” Appl. Opt. 46, 2219–2229(2007).
    [CrossRef]
  36. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007).
    [CrossRef]
  37. S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207(2006).
    [CrossRef]
  38. T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
    [CrossRef]
  39. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).
  40. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [CrossRef]
  41. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticles grating and a metallic surface,” Opt. Lett. 30, 3404–3406 (2005).
    [CrossRef]
  42. D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307–2314(2006).
    [CrossRef]
  43. E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).
  44. H.-S. Cho and P. R. Prucnal, “New formalism of the Kronig-Penney model with application to superlattices,” Phys. Rev. B 36, 3237–3242 (1987).
    [CrossRef]
  45. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006).
    [CrossRef]
  46. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).
    [CrossRef]

2012 (1)

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

2011 (5)

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5, 571–606 (2011).
[CrossRef]

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011).
[CrossRef]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355(2011).
[CrossRef]

N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
[CrossRef]

2010 (2)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

2009 (5)

X. D. Hoa, M. Tabrizian, and A. G. Kirk, “Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nano-gratings,” J. Sens. 2009, 713641(2009).
[CrossRef]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043–3048 (2009).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027–1034 (2009).
[CrossRef]

K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, “Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures,” Opt. Lett. 34, 3905–3907 (2009).
[CrossRef]

2008 (2)

2007 (6)

2006 (4)

2005 (5)

H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
[CrossRef]

P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126, 79–92 (2005).
[CrossRef]

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
[CrossRef]

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, “Electromagnetic coupling between a metal nanoparticles grating and a metallic surface,” Opt. Lett. 30, 3404–3406 (2005).
[CrossRef]

2004 (1)

2003 (2)

S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
[CrossRef]

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

2002 (1)

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

2001 (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).

2000 (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

1999 (1)

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

1998 (2)

P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851(1998).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

1997 (1)

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

1996 (1)

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B 35, 187–191 (1996).
[CrossRef]

1993 (1)

1987 (1)

H.-S. Cho and P. R. Prucnal, “New formalism of the Kronig-Penney model with application to superlattices,” Phys. Rev. B 36, 3237–3242 (1987).
[CrossRef]

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5, 571–606 (2011).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

I. Abdulhalim, “Simplified optical scatterometry for periodic nano-arrays in the quasi-static limit,” Appl. Opt. 46, 2219–2229(2007).
[CrossRef]

I. Abdulhalim, “Biosensing configurations using guided wave resonant structures,” in NATO Science for Peace and Security Series B: Physics and Biophysics, Optical Waveguide Sensing and Imaging, W. J. Bock, I. Gannot, and S. Tanev, eds. (Springer-Verlag, 2007), pp. 211–228.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[CrossRef]

Badenes, G.

Boriskina, S. V.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011).
[CrossRef]

Byun, K. M.

N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
[CrossRef]

K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027–1034 (2009).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).
[CrossRef]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007).
[CrossRef]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401–407 (2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
[CrossRef]

Campbell, C. T.

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392(2007).
[CrossRef]

Cesario, J.

Chen, Y.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Cho, H.-S.

H.-S. Cho and P. R. Prucnal, “New formalism of the Kronig-Penney model with application to superlattices,” Phys. Rev. B 36, 3237–3242 (1987).
[CrossRef]

Cook, C. J.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[CrossRef]

Corn, R. M.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Cui, B.

Demirel, M. C.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011).
[CrossRef]

El-Haija, A. J. A.

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

Enoch, S.

Haggans, C. W.

Halpern, A. R.

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Hane, K.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).

Ho, H. P.

H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043–3048 (2009).
[CrossRef]

X. D. Hoa, M. Tabrizian, and A. G. Kirk, “Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nano-gratings,” J. Sens. 2009, 713641(2009).
[CrossRef]

Hugonin, J. P.

Jang, S. M.

Jensen, T. R.

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B 35, 187–191 (1996).
[CrossRef]

Jung, W. K.

Kabashin, A. V.

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).

Kelley, L.

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Kim, D.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Y. Oh, W. Lee, and D. Kim, “Colocalization of gold nanoparticle-conjugated DNA hybridization for enhanced surface plasmon detection using nanograting antennas,” Opt. Lett. 36, 1353–1355(2011).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. M. Byun, S. M. Jang, S. J. Kim, and D. Kim, “Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength nanostructures,” J. Opt. Soc. Am. A 26, 1027–1034 (2009).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, “Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures,” Opt. Lett. 34, 3905–3907 (2009).
[CrossRef]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).
[CrossRef]

S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543–2549 (2007).
[CrossRef]

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007).
[CrossRef]

D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007).
[CrossRef]

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401–407 (2006).
[CrossRef]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006).
[CrossRef]

D. Kim, “Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 23, 2307–2314(2006).
[CrossRef]

S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207(2006).
[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).
[CrossRef]

Kim, D. J.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, G.

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392(2007).
[CrossRef]

Kim, H. C.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Kim, K.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, “Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures,” Opt. Lett. 34, 3905–3907 (2009).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006).
[CrossRef]

Kim, N.-H.

Kim, P. S.

Kim, S. J.

Kim, Y.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043–3048 (2009).
[CrossRef]

X. D. Hoa, M. Tabrizian, and A. G. Kirk, “Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nano-gratings,” J. Sens. 2009, 713641(2009).
[CrossRef]

Knoll, W.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Kong, S. K.

H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
[CrossRef]

Kostuk, R. K.

Lalanne, P.

Law, W. C.

H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
[CrossRef]

Lazarides, A.

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Lee, G.

Lee, H.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Lee, K.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

Lee, W.

Li, L.

Liebermann, T.

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

Lin, C.

H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
[CrossRef]

Lyon, L. A.

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

Ma, K.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, Y. Oh, K. Ma, E. Sim, and D. Kim, “Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures,” Opt. Lett. 34, 3905–3907 (2009).
[CrossRef]

Main, L.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[CrossRef]

Malic, L.

Mitchell, J. S.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[CrossRef]

Moon, S.

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207(2006).
[CrossRef]

Musick, M. D.

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

Natan, M. J.

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B 35, 187–191 (1996).
[CrossRef]

Nikitin, P. I.

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Oh, C. H.

Oh, Y.

Palik, E. D.

E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).

Pao, M.-C.

Park, S.

Pattnaik, P.

P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126, 79–92 (2005).
[CrossRef]

Prucnal, P. R.

H.-S. Cho and P. R. Prucnal, “New formalism of the Kronig-Penney model with application to superlattices,” Phys. Rev. B 36, 3237–3242 (1987).
[CrossRef]

Quidant, R.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Sai, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011).
[CrossRef]

Schatz, G. C.

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5, 571–606 (2011).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

Shuler, M. L.

Sim, E.

Song, S. H.

Sun, Y.

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043–3048 (2009).
[CrossRef]

X. D. Hoa, M. Tabrizian, and A. G. Kirk, “Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nano-gratings,” J. Sens. 2009, 713641(2009).
[CrossRef]

L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007).
[CrossRef]

Veres, T.

Vollmer, F.

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[CrossRef]

Wu, C.-M.

Wu, S. Y.

H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
[CrossRef]

Wu, Y.

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[CrossRef]

Xia, Y.

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

Yee, S. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B 35, 187–191 (1996).
[CrossRef]

Yoon, S. J.

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).

Anal. Biochem. (1)

J. S. Mitchell, Y. Wu, C. J. Cook, and L. Main, “Sensitivity enhancement of surface plasmon resonance biosensing of small molecules,” Anal. Biochem. 343, 125–135 (2005).
[CrossRef]

Anal. Chem. (3)

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70, 5177–5183 (1998).
[CrossRef]

Y. Sun and Y. Xia, “Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes,” Anal. Chem. 74, 5297–5305 (2002).
[CrossRef]

A. R. Halpern, Y. Chen, R. M. Corn, and D. Kim, “Surface plasmon resonance phase imaging measurements of patterned monolayers and DNA adsorption onto microarrays,” Anal. Chem. 83, 2801–2806 (2011).
[CrossRef]

Appl. Biochem. Biotechnol. (1)

P. Pattnaik, “Surface plasmon resonance: applications in understanding receptor-ligand interaction,” Appl. Biochem. Biotechnol. 126, 79–92 (2005).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (New York) (1)

Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. (New York) 78, 142–143(2001).

Appl. Phys. Lett. (1)

M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Nanoparticle-based protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 99, 073701(2011).
[CrossRef]

Biomaterials (1)

C. T. Campbell and G. Kim, “SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics,” Biomaterials 28, 2380–2392(2007).
[CrossRef]

Biosens. Bioelectron. (3)

S. Moon, Y. Kim, Y. Oh, H. Lee, H. C. Kim, K. Lee, and D. Kim, “Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization,” Biosens. Bioelectron. 32, 141–147 (2012).
[CrossRef]

H. P. Ho, W. C. Law, S. Y. Wu, C. Lin, and S. K. Kong, “Real-time optical based differential phase measurement of surface plasmon resonance,” Biosens. Bioelectron. 20, 2177–2180 (2005).
[CrossRef]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Enhanced SPR response from patterned immobilization of surface bioreceptors on nano-gratings,” Biosens. Bioelectron. 24, 3043–3048 (2009).
[CrossRef]

Colloids Surf. A (1)

T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115–130 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

J. Appl. Phys. (1)

A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003).
[CrossRef]

J. Cluster Sci. (1)

T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, “Electrodynamics of noble metal nanoparticles and nanoparticle clusters,” J. Cluster Sci. 10, 295–317 (1999).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (6)

J. Sens. (1)

X. D. Hoa, M. Tabrizian, and A. G. Kirk, “Rigorous coupled-wave analysis of surface plasmon enhancement from patterned immobilization on nano-gratings,” J. Sens. 2009, 713641(2009).
[CrossRef]

Laser Photon. Rev. (1)

A. Shalabney and I. Abdulhalim, “Sensitivity enhancement methods for surface plasmon sensors,” Laser Photon. Rev. 5, 571–606 (2011).
[CrossRef]

Nanotechnology (1)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Nature Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: labelfree detection down to single molecules,” Nature Methods 5, 591–596 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. B (1)

H.-S. Cho and P. R. Prucnal, “New formalism of the Kronig-Penney model with application to superlattices,” Phys. Rev. B 36, 3237–3242 (1987).
[CrossRef]

Quantum Electron. (1)

A. V. Kabashin and P. I. Nikitin, “Interferometer based on a surface-plasmon resonance for sensor applications,” Quantum Electron. 27, 653–654 (1997).
[CrossRef]

Sens. Actuators A (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A 159, 24–32 (2010).
[CrossRef]

Sens. Actuators B (2)

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors,” Sens. Actuators B 117, 401–407 (2006).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B 35, 187–191 (1996).
[CrossRef]

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Other (2)

E. D. Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).

I. Abdulhalim, “Biosensing configurations using guided wave resonant structures,” in NATO Science for Peace and Security Series B: Physics and Biophysics, Optical Waveguide Sensing and Imaging, W. J. Bock, I. Gannot, and S. Tanev, eds. (Springer-Verlag, 2007), pp. 211–228.

Supplementary Material (2)

» Media 1: AVI (437 KB)     
» Media 2: AVI (455 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Analytical models employed in the calculation: (a) a thin film-based SPR model detecting ambient changes, (b) a thin film-based SPR model detecting layered interactions, and (c) a nanostructure-based SPR model for field localization using EMT. x , y , and z axes are presented in (a).

Fig. 2.
Fig. 2.

Calculated overlap differences of integrals Eqs. (10)–(17) in comparison with sensitivity that is measured by resonance angle shift per unit refractive index unit ( Δ θ sp / Δ n a ), as ambient refractive index n a changes. Calculation is based on the model shown in Fig. 1(a). A thick solid line represents sensitivity with a peak at 209.4 deg / RIU and references the right axis. For the convenience of comparison, overlap differences are normalized by the maximum and inverted for presentation.

Fig. 3.
Fig. 3.

Calculated overlap integrals in comparison with sensitivity Δ θ sp / Δ n t based on the model shown in Fig. 1(b), where a target interaction is modeled as a refractive index change in a layer: (a)  d t = 20 nm , (b) 30 nm, (c) 40 nm, and (d) 50 nm. Sensitivity S is referenced to the right axis, while normalized overlap integrals reference left axes. For the convenience of comparison, overlap differences are normalized by the maximum and inverted for presentation. Arrows indicate the target refractive index at which a guided mode is excited so that the interaction layer acts as a waveguide. Color legends follow those of Fig. 2.

Fig. 4.
Fig. 4.

Optical characteristics when d t = 50 nm : (a) reflection and transmission coefficient ( r ta and t ta ) and (b) forward and backward electric field amplitude ( E t + and E t ) in the target layer. Axial field distribution: (c)  n t = 1.7060 at which Eq. (35) is not satisfied and (d)  n t = 1.7065 at which Eq. (35) is satisfied. 0 < z < 50 represents the target layer, and z > 50 for ambience.

Fig. 5.
Fig. 5.

Sensitivity (right axis) in terms of Δ θ sp / Δ n t and overlap differences (left axis) of nanograting-based localized SPR biosensors: (a)  Λ = 400 nm , f = 50 % , and d g = 30 nm , and (b)  Λ = 400 nm , f = 25 % , and d g = 30 nm . For the convenience of comparison, overlap differences are normalized by the maximum and inverted for presentation. In the inset are the near-field characteristics for n t = 1.33 (A) and 1.80 (B). Near-field characteristics with respect to target refractive index are provided in continuous frames (Media 1 for Λ = 400 nm , f = 50 % , and d g = 30 nm and Media 2 for Λ = 400 nm , f = 25 % , and d g = 30 nm ). Color legends follow those of Fig. 2.

Fig. 6.
Fig. 6.

Correlation coefficients obtained with O 1 2 : (a) layered binding as target thickness ( d t ) is varied with correlation for ambient changes shown as reference and (b) localized SPR detection as the fill factor varies. The correlation coefficients for the layered binding were those of a nonguided mode. Dark and light gray color represents the degree of correlation: light gray for 0.6 < | R | < 0.8 , and dark gray for 0.8 < | R | < 1.0 .

Tables (2)

Tables Icon

Table 1. Calculated Correlation Coefficients Based on Various Overlap Integral Definitions for the Three SPR Detection Scenarios a

Tables Icon

Table 2. Calculated Correlation Coefficients Based on Various Overlap Integral Definitions for the Layered Detection a

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

ε ( r⃗ ) f ( r⃗ ) d V .
E a = t sm p t ma p e j k m d m cos θ m + r sm p r ma p e j k m d m cos θ m E s 0 e j n a k 0 ( x sin θ a + z cos θ a ) .
r sm p = ε m / cos θ m n s / cos θ i ε m / cos θ m + n s / cos θ i ,
r ma p = n a / cos θ a ε m / cos θ m n a / cos θ a + ε m / cos θ m ,
t sm p = 2 n s / cos θ m ε m / cos θ m + n s / cos θ i ,
t ma p = 2 ε m / cos θ a n a / cos θ a + ε m / cos θ m .
E a x = E a cos θ a ,
H a y = ε a μ 0 E a ,
E a z = E a sin θ a .
O 1 = 0 ε a | E a x | d z ,
O 2 = 0 ε a | H a y | d z ,
O 3 = 0 ε a | E a z | d z ,
O 4 = 0 ε a | E a | d z = 0 ε a | E a x 2 + E a z 2 | 1 / 2 d z ,
O 5 = 0 ε a | S a x | d z = 0 ε a | E a z H a y | d z ,
O 6 = 0 ε a | S a z | d z = 0 ε a | E a x H a y | d z ,
O 7 = 0 ε a | S a | d z = 0 ε a | E a x 2 + E a z 2 | 1 / 2 | H a y | d z .
O 1 2 = 0 ε a | E a x | 2 d z .
E a = t sm p t mt p t ta p E s 0 e j n a k 0 ( x sin θ a + z cos θ a ) ( e j k m d m cos θ m + r sm p r mt p e j k m d m cos θ m ) e j k t d t cos θ t + ( r mt p e j k m d m cos θ m + r sm p e j k m d m cos θ m ) r ta p e j k t d t cos θ t ,
E t = 2 t sm p t mt p t ta p E s 0 cos [ k t d t cos θ a n a k 0 ( x sin θ a + z cos θ a ) ] ( e j k m d m cos θ m + r sm p r mt p e j k m d m cos θ m ) e j k t d t cos θ t + ( r mt p e j k m d m cos θ m + r sm p e j k m d m cos θ m ) r ta p e j k t d t cos θ t ,
E t x = E t cos θ t ,
H t y = ε t μ 0 E t ,
E t z = E t sin θ t .
r mt p = n t / cos θ t ε m / cos θ m n t / cos θ t + ε m / cos θ m ,
r ta p = n a / cos θ a n t / cos θ t n a / cos θ a + n t / cos θ t ,
t mt p = 2 ε m / cos θ t n t / cos θ t + ε m / cos θ m ,
t ta p = 2 n t / cos θ a n a / cos θ a + n t / cos θ t .
k s p = ω c ( ε m ε d ε m + ε d ) 1 / 2 .
sin θ sp = 1 n s ( ε m ε d ε m + ε d ) 1 / 2 .
θ sp ε d = 1 2 ( n s ε d ) 2 sin 2 θ sp tan θ sp .
θ sp n d = ( 1 n s ) ε m ε m + ε d 1 1 + n s 2 ε m n s 2 ε m ε d .
θ sp n d ( 1 ε d ε m ) 1 n s 2 ε d .
O 1 ε a = 0 | E a x | d z + ε a 0 | E a x | ε a d z ,
ε eff = ε p ( 0 ) + π 2 3 f 2 ( 1 f ) 2 ( 1 ε m 1 ε a ) 2 ε p ( 0 ) 3 ε s ( 0 ) ( Λ λ ) 2
ε s ( 0 ) = f ε m + ( 1 f ) ε a , ε p ( 0 ) = ε m ε a f ε a + ( 1 f ) ε m
O 1 = 0 0 ( 1 f ) Λ ε | E x | d x d z + d g ( 1 f ) Λ Λ ε | E x | d x d z ;
Δ O Δ n a = O ( n a + Δ n a ) O ( n a ) Δ n a .
L = λ 2 π ( n s sin θ s p ) 2 n a 2 = λ 2 π | ε m | n a 2 1 .
sin θ sp = 1 n s ( ε m ε d ε m + ε d ) 1 / 2 > n a n t ,

Metrics