Abstract

We report on an experimental setup for single-particle orbit tracking, which allows following fluorescent nanoparticles for more than 10 min with a temporal resolution of 4 ms and a dynamic position accuracy of better than 10 nm. On a model sample—20 nm sized fluorescent polymer beads in glycerol—we will illustrate how artifacts caused by unavoidable experimental shortcomings (might) obscure the experimental result and how misinterpretations can be prevented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
    [CrossRef]
  2. E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
    [CrossRef]
  3. B. W. Hicks and K. J. Angelides, “Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision,” J. Membrane Biol. 144, 231–244 (1995).
    [CrossRef]
  4. M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
    [CrossRef]
  5. M. Goulian and S. M. Simon, “Tracking single proteins within cells,” Biophys. J. 79, 2188–2198 (2000).
    [CrossRef]
  6. J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
    [CrossRef]
  7. S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell plasma membrane—do’s and don’t’s,” Methods 46, 131–140 (2008).
    [CrossRef]
  8. B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
    [CrossRef]
  9. E. L. Elson, “Fluorescence correlation spectroscopy: past, present, future,” Biophys. J. 101, 2855–2870 (2011).
    [CrossRef]
  10. M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Z. Phys. Chem. 92, 129–168 (1917).
    [CrossRef]
  11. O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
    [CrossRef]
  12. M. Hellmann, D. W. Heermann, and M. Weiss, “Anomalous reaction kinetics and domain formation on crowded membranes,” Eruophys. Lett. 94, 18002 (2011).
    [CrossRef]
  13. C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011).
    [CrossRef]
  14. E. L. Elson, “Fluorescence correlation spectroscopy and photobleaching recovery,” Annu. Rev. Phys. Chem. 36, 379–406 (1985).
    [CrossRef]
  15. E. L. Elson and D. Madge, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
    [CrossRef]
  16. J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16, 7142–7152 (2008).
    [CrossRef]
  17. M. Speidel, A. Jonáš, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett. 28, 69–71 (2003).
    [CrossRef]
  18. M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009).
    [CrossRef]
  19. B. J. Schnapp, J. Gelles, and M. P. Sheetz, “Nanometer-scale measurements using video light microscopy,” Cell Motil. Cytoskel. 10, 47–53 (1988).
    [CrossRef]
  20. Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).
  21. M. Dahan, T. Laurence, F. Pinaud, D. S. Chemla, A. P. Alivisatos, M. Sauer, and S. Weiss, “Time-gated biological imaging by use of colloidal quantum dots,” Opt. Lett. 26, 825–827 (2001).
    [CrossRef]
  22. M. B. Forstner, J. Käs, and D. Martin, “Single lipid diffusion in Langmuir monolayers,” Langmuir 17, 567–570 (2001).
    [CrossRef]
  23. L. Holtzer, T. Meckel, and Th. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007).
    [CrossRef]
  24. E. J. G. Peterman, H. Sosa, and W. E. Moerner, “Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors,” Annu. Rev. Phys. Chem. 55, 79–96 (2004).
    [CrossRef]
  25. G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
    [CrossRef]
  26. J. Enderlein, “Positional and temporal accuracy of single molecule tracking,” Sing. Mol. 1, 225–230 (2000).
  27. J. Enderlein, “Tracking of fluorescent molecules diffusing within membranes,” Appl. Phys. B 71, 773–777 (2000).
    [CrossRef]
  28. Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
    [CrossRef]
  29. K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7, 3535–3539 (2007).
    [CrossRef]
  30. A. J. Berglund and H. Mabuchi , “Feedback controller design for tracking a single fluorescent molecule,” Appl. Phys. B 78, 653–659 (2004).
    [CrossRef]
  31. V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys. J. 88, 2919–2928 (2005).
    [CrossRef]
  32. V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).
  33. A. J. Berglund and H. Mabuchi, “Tracking-FCS: fluorescence correlation spectroscopy of individual particles,” Opt. Express 13, 8069–8082 (2005).
    [CrossRef]
  34. K. Kis-Petikova and E. Gratton, “Distance measurement by circular scanning of the excitation beam in the two-photon microscope,” Microsc. Res. Tech. 63, 34–49 (2004).
    [CrossRef]
  35. Q. Wang and W. E. Moerner, “Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap,” Appl. Phys. B 99, 23–30 (2010).
    [CrossRef]
  36. Q. Wang and W. E. Moerner, “An adaptive anti-Brownian electrokinetic trap with real-time information on single-molecule diffusivity and mobility,” ACS Nano 5, 5792–5799 (2011).
    [CrossRef]
  37. H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991).
    [CrossRef]
  38. R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A 37, R161–R208 (2004).
    [CrossRef]
  39. J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127–293 (1990).
    [CrossRef]
  40. D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to single particle tracking,” Biophys. J. 83, 2109–2117 (2002).
    [CrossRef]
  41. A. J. Berglund and H. Mabuchi, “Performance bounds on single-particle tracking by fluorescence modulation,” Appl. Phys. B 83, 127–133 (2006).
    [CrossRef]
  42. M. L. Sheely, “Glycerol viscosity tables,” Ind. Eng. Chem. 24, 1060–1064 (1932).
    [CrossRef]
  43. G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997).
    [CrossRef]
  44. A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011).
    [CrossRef]
  45. K. Halbach, “Matrix representation of Gaussian optics,” Am. J. Phys. 32, 90–108 (1964).
    [CrossRef]
  46. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef]
  47. K. C. Neumann and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [CrossRef]

2011 (5)

M. Hellmann, D. W. Heermann, and M. Weiss, “Anomalous reaction kinetics and domain formation on crowded membranes,” Eruophys. Lett. 94, 18002 (2011).
[CrossRef]

C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011).
[CrossRef]

E. L. Elson, “Fluorescence correlation spectroscopy: past, present, future,” Biophys. J. 101, 2855–2870 (2011).
[CrossRef]

Q. Wang and W. E. Moerner, “An adaptive anti-Brownian electrokinetic trap with real-time information on single-molecule diffusivity and mobility,” ACS Nano 5, 5792–5799 (2011).
[CrossRef]

A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011).
[CrossRef]

2010 (3)

Q. Wang and W. E. Moerner, “Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap,” Appl. Phys. B 99, 23–30 (2010).
[CrossRef]

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
[CrossRef]

2009 (2)

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009).
[CrossRef]

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

2008 (2)

S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell plasma membrane—do’s and don’t’s,” Methods 46, 131–140 (2008).
[CrossRef]

J. G. Ritter, R. Veith, J.-P. Siebrasse, and U. Kubitscheck, “High-contrast single-particle tracking by selective focal plane illumination microscopy,” Opt. Express 16, 7142–7152 (2008).
[CrossRef]

2007 (3)

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7, 3535–3539 (2007).
[CrossRef]

L. Holtzer, T. Meckel, and Th. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

2006 (1)

A. J. Berglund and H. Mabuchi, “Performance bounds on single-particle tracking by fluorescence modulation,” Appl. Phys. B 83, 127–133 (2006).
[CrossRef]

2005 (2)

V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys. J. 88, 2919–2928 (2005).
[CrossRef]

A. J. Berglund and H. Mabuchi, “Tracking-FCS: fluorescence correlation spectroscopy of individual particles,” Opt. Express 13, 8069–8082 (2005).
[CrossRef]

2004 (5)

K. Kis-Petikova and E. Gratton, “Distance measurement by circular scanning of the excitation beam in the two-photon microscope,” Microsc. Res. Tech. 63, 34–49 (2004).
[CrossRef]

A. J. Berglund and H. Mabuchi , “Feedback controller design for tracking a single fluorescent molecule,” Appl. Phys. B 78, 653–659 (2004).
[CrossRef]

E. J. G. Peterman, H. Sosa, and W. E. Moerner, “Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors,” Annu. Rev. Phys. Chem. 55, 79–96 (2004).
[CrossRef]

R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A 37, R161–R208 (2004).
[CrossRef]

K. C. Neumann and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

2003 (2)

V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).

M. Speidel, A. Jonáš, and E.-L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett. 28, 69–71 (2003).
[CrossRef]

2002 (1)

D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to single particle tracking,” Biophys. J. 83, 2109–2117 (2002).
[CrossRef]

2001 (3)

M. Dahan, T. Laurence, F. Pinaud, D. S. Chemla, A. P. Alivisatos, M. Sauer, and S. Weiss, “Time-gated biological imaging by use of colloidal quantum dots,” Opt. Lett. 26, 825–827 (2001).
[CrossRef]

M. B. Forstner, J. Käs, and D. Martin, “Single lipid diffusion in Langmuir monolayers,” Langmuir 17, 567–570 (2001).
[CrossRef]

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

2000 (4)

J. Enderlein, “Positional and temporal accuracy of single molecule tracking,” Sing. Mol. 1, 225–230 (2000).

J. Enderlein, “Tracking of fluorescent molecules diffusing within membranes,” Appl. Phys. B 71, 773–777 (2000).
[CrossRef]

M. Goulian and S. M. Simon, “Tracking single proteins within cells,” Biophys. J. 79, 2188–2198 (2000).
[CrossRef]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
[CrossRef]

1997 (2)

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[CrossRef]

G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997).
[CrossRef]

1996 (1)

Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

1995 (1)

B. W. Hicks and K. J. Angelides, “Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision,” J. Membrane Biol. 144, 231–244 (1995).
[CrossRef]

1991 (1)

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991).
[CrossRef]

1990 (1)

J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127–293 (1990).
[CrossRef]

1988 (2)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

B. J. Schnapp, J. Gelles, and M. P. Sheetz, “Nanometer-scale measurements using video light microscopy,” Cell Motil. Cytoskel. 10, 47–53 (1988).
[CrossRef]

1986 (1)

1985 (1)

E. L. Elson, “Fluorescence correlation spectroscopy and photobleaching recovery,” Annu. Rev. Phys. Chem. 36, 379–406 (1985).
[CrossRef]

1974 (1)

E. L. Elson and D. Madge, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[CrossRef]

1964 (1)

K. Halbach, “Matrix representation of Gaussian optics,” Am. J. Phys. 32, 90–108 (1964).
[CrossRef]

1932 (1)

M. L. Sheely, “Glycerol viscosity tables,” Ind. Eng. Chem. 24, 1060–1064 (1932).
[CrossRef]

1917 (1)

M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Z. Phys. Chem. 92, 129–168 (1917).
[CrossRef]

Alivisatos, A. P.

Angelides, K. J.

B. W. Hicks and K. J. Angelides, “Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision,” J. Membrane Biol. 144, 231–244 (1995).
[CrossRef]

Ashkin, A.

Badieirostami, M.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009).
[CrossRef]

Baumgartner, W.

Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

Bein, R.

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

Bénichou, O.

O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
[CrossRef]

Berglund, A. J.

K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7, 3535–3539 (2007).
[CrossRef]

A. J. Berglund and H. Mabuchi, “Performance bounds on single-particle tracking by fluorescence modulation,” Appl. Phys. B 83, 127–133 (2006).
[CrossRef]

A. J. Berglund and H. Mabuchi, “Tracking-FCS: fluorescence correlation spectroscopy of individual particles,” Opt. Express 13, 8069–8082 (2005).
[CrossRef]

A. J. Berglund and H. Mabuchi , “Feedback controller design for tracking a single fluorescent molecule,” Appl. Phys. B 78, 653–659 (2004).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. C. Neumann and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Bouchaud, J.-P.

J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127–293 (1990).
[CrossRef]

Bräuchle, Ch.

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

Brown, Th.

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

Buning, H.

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

Burkacky, O.

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

Chemla, D. S.

Chevalier, C.

O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
[CrossRef]

Chu, S.

Crocker, J. C.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
[CrossRef]

Dahan, M.

Dziedzic, J. M.

Elson, E. L.

E. L. Elson, “Fluorescence correlation spectroscopy: past, present, future,” Biophys. J. 101, 2855–2870 (2011).
[CrossRef]

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991).
[CrossRef]

E. L. Elson, “Fluorescence correlation spectroscopy and photobleaching recovery,” Annu. Rev. Phys. Chem. 36, 379–406 (1985).
[CrossRef]

E. L. Elson and D. Madge, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[CrossRef]

Enderlein, J.

J. Enderlein, “Positional and temporal accuracy of single molecule tracking,” Sing. Mol. 1, 225–230 (2000).

J. Enderlein, “Tracking of fluorescent molecules diffusing within membranes,” Appl. Phys. B 71, 773–777 (2000).
[CrossRef]

Endress, Th.

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

Florin, E.-L.

Forstner, M. B.

D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to single particle tracking,” Biophys. J. 83, 2109–2117 (2002).
[CrossRef]

M. B. Forstner, J. Käs, and D. Martin, “Single lipid diffusion in Langmuir monolayers,” Langmuir 17, 567–570 (2001).
[CrossRef]

Friedriszik, F.

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

Gelles, J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

B. J. Schnapp, J. Gelles, and M. P. Sheetz, “Nanometer-scale measurements using video light microscopy,” Cell Motil. Cytoskel. 10, 47–53 (1988).
[CrossRef]

Georges, A.

J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127–293 (1990).
[CrossRef]

Goulian, M.

M. Goulian and S. M. Simon, “Tracking single proteins within cells,” Biophys. J. 79, 2188–2198 (2000).
[CrossRef]

Graaf, H.

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

Gratton, E.

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys. J. 88, 2919–2928 (2005).
[CrossRef]

K. Kis-Petikova and E. Gratton, “Distance measurement by circular scanning of the excitation beam in the two-photon microscope,” Microsc. Res. Tech. 63, 34–49 (2004).
[CrossRef]

V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).

Gruber, H. J.

Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

Halbach, K.

K. Halbach, “Matrix representation of Gaussian optics,” Am. J. Phys. 32, 90–108 (1964).
[CrossRef]

Hallek, M.

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

Haramagatti, C. R.

C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011).
[CrossRef]

Heermann, D. W.

M. Hellmann, D. W. Heermann, and M. Weiss, “Anomalous reaction kinetics and domain formation on crowded membranes,” Eruophys. Lett. 94, 18002 (2011).
[CrossRef]

Hellmann, M.

M. Hellmann, D. W. Heermann, and M. Weiss, “Anomalous reaction kinetics and domain formation on crowded membranes,” Eruophys. Lett. 94, 18002 (2011).
[CrossRef]

Hicks, B. W.

B. W. Hicks and K. J. Angelides, “Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision,” J. Membrane Biol. 144, 231–244 (1995).
[CrossRef]

Holtzer, L.

L. Holtzer, T. Meckel, and Th. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Jacobson, K.

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[CrossRef]

Jonáš, A.

Jung, Ch.

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

Käs, J.

M. B. Forstner, J. Käs, and D. Martin, “Single lipid diffusion in Langmuir monolayers,” Langmuir 17, 567–570 (2001).
[CrossRef]

Käs, J. A.

D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to single particle tracking,” Biophys. J. 83, 2109–2117 (2002).
[CrossRef]

Katayama, Y.

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

Kirstein, J.

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

Kis-Petikova, K.

K. Kis-Petikova and E. Gratton, “Distance measurement by circular scanning of the excitation beam in the two-photon microscope,” Microsc. Res. Tech. 63, 34–49 (2004).
[CrossRef]

V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).

Klafter, J.

O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
[CrossRef]

R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A 37, R161–R208 (2004).
[CrossRef]

Köhler, J.

C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011).
[CrossRef]

Krapf, D.

A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011).
[CrossRef]

Kubitscheck, U.

Lamb, D. C.

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

Laurence, T.

Levi, V.

V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys. J. 88, 2919–2928 (2005).
[CrossRef]

V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).

Levitt, A. C.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
[CrossRef]

Lew, M. D.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009).
[CrossRef]

Mabuchi, H.

K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7, 3535–3539 (2007).
[CrossRef]

A. J. Berglund and H. Mabuchi, “Performance bounds on single-particle tracking by fluorescence modulation,” Appl. Phys. B 83, 127–133 (2006).
[CrossRef]

A. J. Berglund and H. Mabuchi, “Tracking-FCS: fluorescence correlation spectroscopy of individual particles,” Opt. Express 13, 8069–8082 (2005).
[CrossRef]

A. J. Berglund and H. Mabuchi , “Feedback controller design for tracking a single fluorescent molecule,” Appl. Phys. B 78, 653–659 (2004).
[CrossRef]

Madge, D.

E. L. Elson and D. Madge, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[CrossRef]

Martin, D.

M. B. Forstner, J. Käs, and D. Martin, “Single lipid diffusion in Langmuir monolayers,” Langmuir 17, 567–570 (2001).
[CrossRef]

Martin, D. S.

D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to single particle tracking,” Biophys. J. 83, 2109–2117 (2002).
[CrossRef]

McHale, K.

K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7, 3535–3539 (2007).
[CrossRef]

Meckel, T.

L. Holtzer, T. Meckel, and Th. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Metzler, R.

R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A 37, R161–R208 (2004).
[CrossRef]

Meyer, B.

O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
[CrossRef]

Meyer, M.

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

Moerner, W. E.

Q. Wang and W. E. Moerner, “An adaptive anti-Brownian electrokinetic trap with real-time information on single-molecule diffusivity and mobility,” ACS Nano 5, 5792–5799 (2011).
[CrossRef]

Q. Wang and W. E. Moerner, “Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap,” Appl. Phys. B 99, 23–30 (2010).
[CrossRef]

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009).
[CrossRef]

E. J. G. Peterman, H. Sosa, and W. E. Moerner, “Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors,” Annu. Rev. Phys. Chem. 55, 79–96 (2004).
[CrossRef]

Müller, A. H. E.

C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011).
[CrossRef]

Neumann, K. C.

K. C. Neumann and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Peterman, E. J. G.

E. J. G. Peterman, H. Sosa, and W. E. Moerner, “Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors,” Annu. Rev. Phys. Chem. 55, 79–96 (2004).
[CrossRef]

Pinaud, F.

Platschek, B.

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

Qian, H.

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991).
[CrossRef]

Ried, M. U.

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

Ritter, J. G.

Ruan, Q.

V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys. J. 88, 2919–2928 (2005).
[CrossRef]

V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).

Sauer, M.

Saxton, M. J.

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[CrossRef]

Schacher, F. H.

C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011).
[CrossRef]

Schindler, H.

G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997).
[CrossRef]

Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

Schmidt, T.

G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997).
[CrossRef]

Schmidt, Th.

L. Holtzer, T. Meckel, and Th. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

Schnapp, B. J.

B. J. Schnapp, J. Gelles, and M. P. Sheetz, “Nanometer-scale measurements using video light microscopy,” Cell Motil. Cytoskel. 10, 47–53 (1988).
[CrossRef]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

Schofield, A.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
[CrossRef]

Schulz, B.

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

Schuster, J.

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

Schütz, G. J.

S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell plasma membrane—do’s and don’t’s,” Methods 46, 131–140 (2008).
[CrossRef]

G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997).
[CrossRef]

Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

Seisenberger, G.

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

Sheely, M. L.

M. L. Sheely, “Glycerol viscosity tables,” Ind. Eng. Chem. 24, 1060–1064 (1932).
[CrossRef]

Sheetz, M. P.

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991).
[CrossRef]

B. J. Schnapp, J. Gelles, and M. P. Sheetz, “Nanometer-scale measurements using video light microscopy,” Cell Motil. Cytoskel. 10, 47–53 (1988).
[CrossRef]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

Siebrasse, J.-P.

Simon, B.

A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011).
[CrossRef]

Simon, S. M.

M. Goulian and S. M. Simon, “Tracking single proteins within cells,” Biophys. J. 79, 2188–2198 (2000).
[CrossRef]

Sosa, H.

E. J. G. Peterman, H. Sosa, and W. E. Moerner, “Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors,” Annu. Rev. Phys. Chem. 55, 79–96 (2004).
[CrossRef]

Speidel, M.

Tamkun, M. M.

A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011).
[CrossRef]

Tauber, D.

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

Thompson, M. A.

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009).
[CrossRef]

Veith, R.

Voituriez, R.

O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
[CrossRef]

von Borczyskowski, C.

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

von Smoluchowski, M.

M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Z. Phys. Chem. 92, 129–168 (1917).
[CrossRef]

Wang, Q.

Q. Wang and W. E. Moerner, “An adaptive anti-Brownian electrokinetic trap with real-time information on single-molecule diffusivity and mobility,” ACS Nano 5, 5792–5799 (2011).
[CrossRef]

Q. Wang and W. E. Moerner, “Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap,” Appl. Phys. B 99, 23–30 (2010).
[CrossRef]

Weeks, E. R.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
[CrossRef]

Weigel, A. V.

A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011).
[CrossRef]

Weiss, M.

M. Hellmann, D. W. Heermann, and M. Weiss, “Anomalous reaction kinetics and domain formation on crowded membranes,” Eruophys. Lett. 94, 18002 (2011).
[CrossRef]

Weiss, S.

Weitz, D. A.

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
[CrossRef]

Wieser, S.

S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell plasma membrane—do’s and don’t’s,” Methods 46, 131–140 (2008).
[CrossRef]

ACS Nano (1)

Q. Wang and W. E. Moerner, “An adaptive anti-Brownian electrokinetic trap with real-time information on single-molecule diffusivity and mobility,” ACS Nano 5, 5792–5799 (2011).
[CrossRef]

Am. J. Phys. (1)

K. Halbach, “Matrix representation of Gaussian optics,” Am. J. Phys. 32, 90–108 (1964).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

M. J. Saxton and K. Jacobson, “Single-particle tracking: applications to membrane dynamics,” Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

E. L. Elson, “Fluorescence correlation spectroscopy and photobleaching recovery,” Annu. Rev. Phys. Chem. 36, 379–406 (1985).
[CrossRef]

E. J. G. Peterman, H. Sosa, and W. E. Moerner, “Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors,” Annu. Rev. Phys. Chem. 55, 79–96 (2004).
[CrossRef]

Appl. Phys. B (4)

J. Enderlein, “Tracking of fluorescent molecules diffusing within membranes,” Appl. Phys. B 71, 773–777 (2000).
[CrossRef]

A. J. Berglund and H. Mabuchi , “Feedback controller design for tracking a single fluorescent molecule,” Appl. Phys. B 78, 653–659 (2004).
[CrossRef]

Q. Wang and W. E. Moerner, “Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap,” Appl. Phys. B 99, 23–30 (2010).
[CrossRef]

A. J. Berglund and H. Mabuchi, “Performance bounds on single-particle tracking by fluorescence modulation,” Appl. Phys. B 83, 127–133 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

L. Holtzer, T. Meckel, and Th. Schmidt, “Nanometric three-dimensional tracking of individual quantum dots in cells,” Appl. Phys. Lett. 90, 053902 (2007).
[CrossRef]

Biochem. Soc. Trans. (1)

V. Levi, Q. Ruan, K. Kis-Petikova, and E. Gratton, “Scanning FCS, a novel method for three-dimensional particle tracking,” Biochem. Soc. Trans. 31, 997–1000. (2003).

Biophys. J. (6)

V. Levi, Q. Ruan, and E. Gratton, “3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells,” Biophys. J. 88, 2919–2928 (2005).
[CrossRef]

M. Goulian and S. M. Simon, “Tracking single proteins within cells,” Biophys. J. 79, 2188–2198 (2000).
[CrossRef]

E. L. Elson, “Fluorescence correlation spectroscopy: past, present, future,” Biophys. J. 101, 2855–2870 (2011).
[CrossRef]

G. J. Schütz, H. Schindler, and T. Schmidt, “Single-molecule microscopy on model membranes reveals anomalous diffusion,” Biophys. J. 73, 1073–1080 (1997).
[CrossRef]

H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophys. J. 60, 910–921 (1991).
[CrossRef]

D. S. Martin, M. B. Forstner, and J. A. Käs, “Apparent subdiffusion inherent to single particle tracking,” Biophys. J. 83, 2109–2117 (2002).
[CrossRef]

Biopolymers (1)

E. L. Elson and D. Madge, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
[CrossRef]

Cell Motil. Cytoskel. (1)

B. J. Schnapp, J. Gelles, and M. P. Sheetz, “Nanometer-scale measurements using video light microscopy,” Cell Motil. Cytoskel. 10, 47–53 (1988).
[CrossRef]

Chem. Phys. Chem. (1)

Y. Katayama, O. Burkacky, M. Meyer, Ch. Bräuchle, E. Gratton, and D. C. Lamb, “Real-time nanomicroscopy via three-dimensional single-particle tracking,” Chem. Phys. Chem. 10, 2458–2464 (2009).
[CrossRef]

Eruophys. Lett. (1)

M. Hellmann, D. W. Heermann, and M. Weiss, “Anomalous reaction kinetics and domain formation on crowded membranes,” Eruophys. Lett. 94, 18002 (2011).
[CrossRef]

Ind. Eng. Chem. (1)

M. L. Sheely, “Glycerol viscosity tables,” Ind. Eng. Chem. 24, 1060–1064 (1932).
[CrossRef]

J. Membrane Biol. (1)

B. W. Hicks and K. J. Angelides, “Tracking movements of lipids and Thy1 molecules in the plasmalemma of living fibroblasts by fluorescence video microscopy with nanometer scale precision,” J. Membrane Biol. 144, 231–244 (1995).
[CrossRef]

J. Phys. A (1)

R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” J. Phys. A 37, R161–R208 (2004).
[CrossRef]

Langmuir (1)

M. B. Forstner, J. Käs, and D. Martin, “Single lipid diffusion in Langmuir monolayers,” Langmuir 17, 567–570 (2001).
[CrossRef]

Methods (1)

S. Wieser and G. J. Schütz, “Tracking single molecules in the live cell plasma membrane—do’s and don’t’s,” Methods 46, 131–140 (2008).
[CrossRef]

Microsc. Res. Tech. (1)

K. Kis-Petikova and E. Gratton, “Distance measurement by circular scanning of the excitation beam in the two-photon microscope,” Microsc. Res. Tech. 63, 34–49 (2004).
[CrossRef]

Nano Lett. (2)

K. McHale, A. J. Berglund, and H. Mabuchi, “Quantum dot photon statistics measured by three-dimensional particle tracking,” Nano Lett. 7, 3535–3539 (2007).
[CrossRef]

M. A. Thompson, M. D. Lew, M. Badieirostami, and W. E. Moerner, “Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function,” Nano Lett. 10, 211–218 (2009).
[CrossRef]

Nat. Chem. (1)

O. Bénichou, C. Chevalier, J. Klafter, B. Meyer, and R. Voituriez, “Geometry-controlled kinetics,” Nat. Chem. 2, 472–477 (2010).
[CrossRef]

Nat. Mater. (1)

J. Kirstein, B. Platschek, Ch. Jung, R. Bein, Th. Brown, and Ch. Bräuchle, “Exploration of nanostructured channel systems with single-molecule probes,” Nat. Mater. 6, 303–310 (2007).
[CrossRef]

Nature (1)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (2)

C. R. Haramagatti, F. H. Schacher, A. H. E. Müller, and J. Köhler, “Diblock copolymer membranes investigated by single-particle tracking,” Phys. Chem. Chem. Phys. 13, 2278–2284 (2011).
[CrossRef]

B. Schulz, D. Tauber, F. Friedriszik, H. Graaf, J. Schuster, and C. von Borczyskowski, “Optical detection of heterogeneous single molecule diffusion in thin liquid crystal films,” Phys. Chem. Chem. Phys. 12, 11555–11564 (2010).
[CrossRef]

Phys. Rep. (1)

J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127–293 (1990).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

A. V. Weigel, B. Simon, M. M. Tamkun, and D. Krapf, “Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking,” Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011).
[CrossRef]

Th. Schmidt, G. J. Schütz, W. Baumgartner, H. J. Gruber, and H. Schindler, “Imaging of single molecule diffusion,” Proc. Natl. Acad. Sci. USA 93, 2926–2929 (1996).

Rev. Sci. Instrum. (1)

K. C. Neumann and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[CrossRef]

Science (2)

G. Seisenberger, M. U. Ried, Th. Endress, H. Buning, M. Hallek, and Ch. Bräuchle, “Real-time single-molecule imaging of the infection pathway of an adeno-associated virus,” Science 294, 1929–1932 (2001).
[CrossRef]

E. R. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, “Three-dimensional direct imaging of structural relaxation near the colloidal glass transition,” Science 287, 627–631 (2000).
[CrossRef]

Sing. Mol. (1)

J. Enderlein, “Positional and temporal accuracy of single molecule tracking,” Sing. Mol. 1, 225–230 (2000).

Z. Phys. Chem. (1)

M. von Smoluchowski, “Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen,” Z. Phys. Chem. 92, 129–168 (1917).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic geometry (not drawn to scale) of a focused laser beam with waist w (1/e2-width) rotating at a frequency ν=ω/2π in the sample plane. The red dot indicates a fluorescent particle at the position (xp, yp) within the orbit. The radius of the orbit is R. Inset top right, shows schematically the emission intensity of the particle as a function of time.

Fig. 2.
Fig. 2.

(a) Schematic representation of the optical setup. In the lower part, the light path including all optical elements is shown (L, lenses; F, filter; DBS, dichroic beam splitter; AOD, acousto-optical deflector; APD, avalanche photodiode; CCD, charge-coupled device). Inset top left, sample (blue shaded area), the microscope objective, and the piezo on an expanded scale. The excitation light is indicated in green and is reflected toward the sample by a dichroic beam splitter. Once the light orbit that is created in the sample plane hits a polymer bead (red dots), red-shifted fluorescence is emitted that passes the dichroic and travels toward the detectors. (b) Detailed view of box I of part (a), which corresponds to the deflection unit. The propagation of the laser under the most extreme deflection angles is indicated by the dark green and light green colors, respectively. The AODs are depicted as the two red boxes. The four lenses have the same focal lengths of f=250mm. The two dashed lines perpendicular to the optical axis indicate a set of conjugated planes. (c) Detailed view of box II in part (a), which represents a set of telecentric lenses. Beyond L4, a collimated, rotating light beam propagates under an angle with respect to the optical axis. The pivot point is defined as the point on the optical axis where the collimated beam crosses the optical axis. The set of telecentric lenses, L5 (f5=50mm) and L6 (f6=300mm), maps the pivot point into the back focal plane of the objective, L7, creating a rotating focus for the excitation light, see inset.

Fig. 3.
Fig. 3.

(a) Excitation intensity experienced by fluorescent particles (blue, red dots) as a function of their position with respect to the light orbit. The laser intensity is represented by a Gaussian profile (thin green curve) the light orbit by the ellipse (thick green line). A particle that resides close to the center of the light orbit (blue dot) experiences linear changes of the excitation intensity (black line) upon small movements. This yields a harmonic modulation of the emission intensity of the particle (blue profile, top right). Particles that reside close to the rim of the light orbit (red dot) experience strong deviations from a linear variation of the excitation intensity upon small movements, as is indicated by the red-shaded area. This introduces higher harmonics into the temporal modulation of the emission intensity (red profile, top right). (b) Simulation (red line) of the position of the particle determined by the tracking algorithm, r, as a function of its real position rreal with respect to the center of the light orbit. The radius of the light orbit is R=190nm and is indicated by the arrow. The difference between the red line and the blue line, which corresponds to the angle bisector, provides the correction function for the position of the particle. In two consecutive experiments, an immobilized particle was moved with the piezo in steps of 10 nm from the center to the rim of the light orbit. In the first experiment, its position was determined without the correction (red squares), whereas for the second experiment, the correction was applied (blue circles).

Fig. 4.
Fig. 4.

(a) Illustration of the mismatch between the optical axis and the z axis movement of the piezo. The green ellipse represents the light orbit. The piezo is wobbled over a distance 2Nzs along the piezo z axis. For a fluorescent bead (red dot) in the light orbit, this appears as if the particle oscillates in the plane perpendicular to the optical axis (red harmonic signal). (b) MSD of a trajectory of a 20 nm sized bead in glycerol. For this experiment, the piezostage was tilted on purpose by more than 2° with respect to the optical axis. The raw data (black squares) stem from a trajectory that has been followed for 5 min with a time resolution of Δt=4ms. The number of steps for the movement of the piezo along the z axis was Nz=4, with a step size of s=20 (60nm). The modulation of the MSD with a period of 2Nz is clearly revealed and highlighted by the blue data points. The MSD calculated from the corrected coordinates (see text) is given by the red dots. For both MSDs, the solid lines serve as a guide for the eye.

Fig. 5.
Fig. 5.

MSD of 20 nm sized tracers in glycerol as a function of the emission intensity of the particle, which increases from top to bottom by about 1 order of magnitude. The variation in emission intensity was controlled by the excitation intensity. (a) Plot of the data (symbols) on linear scales and linear fits (lines). (b) Plot of the same data on double logarithmic scales. For comparison, the dashed gray line represents the MSD that would have been obtained for σ=0. In both plots, the first data point has been skipped due to residual influence of the oscillation of the piezo.

Fig. 6.
Fig. 6.

(a) Schematic representation of position averaging during the acquisition time Δt. The green area corresponds to the focal spot that rotates in the plane of the sample (green dotted line). The gray line depicts the movement of the particle during the acquisition time Δt. It starts at the center of the orbit indicated by the open circle and ends at the position indicated by the gray dot. The full black dot is the position that is measured and corresponds to the averaged position of the particle during Δt. (b) Double logarithmic plot of the MSD (symbols) of a 20 nm sized particle in glycerol as a function of the duration of the acquisition time. For comparison, the MSD that corresponds to the extrapolation toward Δt=0 is shown by the dashed gray line. All other lines serve as a guide for the eye.

Fig. 7.
Fig. 7.

Measuring the flow in the sample chamber. (a) Sequence of 1000 data points (4 s) taken from a long trajectory of 150,000 data points. The gray arrow corresponds to the displacement vector of the particle during the 4 s. (b) Scatterplot of 1050 displacement vectors from seven independent trajectories. The vectors have been shifted with their starting point to a common origin. (c) Histogram of the x component of the displacement vectors. The full line corresponds to a Gaussian fit centered at a mean of 47nm. (d) Histogram of the y component of the displacement vectors. The full line corresponds to a Gaussian fit centered at a mean of 38nm.

Fig. 8.
Fig. 8.

Ensemble average of time-averaged MSDs from seven trajectories taken from different 20 nm sized beads in glycerol at different stages of the correction. (a) Linear plot: raw data (black squares), data corrected for position averaging (blue circles), and fully corrected data (red triangles). All lines correspond to linear fits. The top right inset shows the same data at a scale that has been expanded by a factor of 100. The top left inset shows the extrapolation of the fits toward τ=0 and the respective intercepts with the MSD axis. For this example, we obtain D and σ as given in the figure. (b) Same data on double logarithmic axis. The lines are linear fits to the data with slopes of 1.00 (black squares), 0.98 (blue circles), and 1.03 (red triangles). For more details, see the text.

Fig. 9.
Fig. 9.

Schematic representation of the beam path calculation starting at the first AOD (x AOD).

Fig. 10.
Fig. 10.

Example of empirical CDF as a function of the squared displacements at a lag time of τ=40ms is shown by the black squares. The fit (red line) was performed according to Eq. (A3).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I(t)=I0exp(2w2(xpRcos(ωt))2)·exp(2w2(ypRsin(ωt))2)+IB.
xp=w22R0TI(t)cos(ωt)dt0TI(t)dt,yp=w22R0TI(t)sin(ωt)dt0TI(t)dt,
xp=w22Rn=1NSSncos(ωnδt)n=1NSSn,yp=w22Rn=1NSSnsin(ωnδt)n=1NSSn.
MSD(τ)=Δr(kΔt)2T=1Nki=1Nk[r(iΔt)r((i+k)Δt)]2.
Δr(τ)2T=4Dτ+2σ2.
Δr(τ)2T=4D(τΔt/3)+2σ2.
(boutφout)=(f7f5f6f12f7f5f62f6f7f50)·(binφin),
Utrap=4Pexnm4a3w2c(m21m2+2),
CDF(r2,τ)=1(βexp(r2r12)+(1β)exp(r2r22)).

Metrics