Abstract

The growth of reflectance peaks from optical fiber Bragg gratings has been studied to determine the relative importance of grating features when writing with the phase-mask technique. Measurements of spectra for two different fiber types using two distinct phase masks allowed the contribution from grating features of half the phase-mask periodicity and of the phase-mask periodicity at the Bragg wavelength to be determined. The dominance of the latter periodicity was ascribed to either the small fiber core diameter that limited the extent of the Talbot diffraction pattern, or the enhanced ±2 diffraction orders of a custom-made phase mask used.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  3. J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
    [CrossRef]
  4. P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
    [CrossRef]
  5. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
    [CrossRef]
  6. P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
    [CrossRef]
  7. J. D. Mills, C. W. J. Hillman, B. H. Blott, and W. S. Brocklesby, “Imaging of free-space interference patterns used to manufacture fiber Bragg gratings,” Appl. Opt. 39, 6128–6135 (2000).
    [CrossRef]
  8. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol. 17, 2361–2365 (1999).
    [CrossRef]
  9. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
    [CrossRef]
  10. C. W. Smelser, S. J. Mihailov, D. Grobnic, P. Lu, R. B. Walker, H. Ding, and X. Dai, “Multiple-beam interference patterns in optical fiber generated with ultrafast pulses and a phase mask,” Opt. Lett. 29, 1458–1460 (2004).
    [CrossRef]
  11. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
    [CrossRef]
  12. W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
    [CrossRef]
  13. P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
    [CrossRef]
  14. S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
    [CrossRef]
  15. S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).
  16. B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett. 18, 1277–1279 (1993).
    [CrossRef]
  17. C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
    [CrossRef]
  18. C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.
  19. S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (Australian Institute of Physics, Australian Optical Society, and Engineers Australia, 2010), p. 659.
  20. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
    [CrossRef]
  21. H. Patrick and S. L. Gilbert, “Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993).
    [CrossRef]
  22. T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
    [CrossRef]
  23. B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6, 1595–1624 (1996).
    [CrossRef]
  24. T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838–1840 (1995).
    [CrossRef]

2009 (1)

2008 (2)

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

2006 (1)

2005 (1)

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

2004 (1)

2003 (1)

2000 (1)

1999 (1)

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

1996 (2)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6, 1595–1624 (1996).
[CrossRef]

1995 (2)

T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838–1840 (1995).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

1994 (3)

P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
[CrossRef]

1993 (4)

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
[CrossRef]

H. Patrick and S. L. Gilbert, “Growth of Bragg gratings produced by continuous-wave ultraviolet light in optical fiber,” Opt. Lett. 18, 1484–1486 (1993).
[CrossRef]

B. Malo, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill, “Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations,” Opt. Lett. 18, 1277–1279 (1993).
[CrossRef]

Albert, J.

Anderson, D. Z.

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
[CrossRef]

Baxter, G. W.

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (Australian Institute of Physics, Australian Optical Society, and Engineers Australia, 2010), p. 659.

Bayon, J. F.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Bernage, P.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Bilodeau, F.

Blott, B. H.

Brocklesby, W. S.

Brodzeli, Z.

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).

Byron, K. C.

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Canning, J.

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Chu, P. L.

Collins, S. F.

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (Australian Institute of Physics, Australian Optical Society, and Engineers Australia, 2010), p. 659.

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

Dai, X.

Ding, H.

Douay, M.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Dragomir, N. M.

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

Dyer, P. E.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Erdogan, T.

T. Erdogan and J. E. Sipe, “Radiation-mode coupling loss in tilted fiber phase gratings,” Opt. Lett. 20, 1838–1840 (1995).
[CrossRef]

T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
[CrossRef]

Farley, R. J.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Farrell, P. M.

Georges, T.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Giedl, R.

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Gilbert, S. L.

Grobnic, D.

Hill, K. O.

Hillman, C. W. J.

Johnson, D. C.

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Kherbouche, F.

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6, 1595–1624 (1996).
[CrossRef]

Kitcher, D. J.

Kouskousis, B. P.

Lemaire, P. J.

T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
[CrossRef]

Lu, P.

Malo, B.

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Mihailov, S. J.

Mills, J. D.

Mizrahi, V.

T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
[CrossRef]

Niay, P.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Patrick, H.

Peng, G. D.

Poumellec, B.

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6, 1595–1624 (1996).
[CrossRef]

Ragdale, C.

P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
[CrossRef]

Reid, D.

P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

Roberts, A.

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

Rollinson, C.

Rollinson, C. M.

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

Sipe, J. E.

Smelser, C. W.

Stevenson, A. J.

Strasser, T. A.

T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
[CrossRef]

Wade, S. A.

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).

B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (Australian Institute of Physics, Australian Optical Society, and Engineers Australia, 2010), p. 659.

Walker, R. B.

White, A. E.

T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
[CrossRef]

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
[CrossRef]

Wu, B.

Xie, W. X.

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Xiong, Z.

Yam, S. P.

S. P. Yam, Z. Brodzeli, B. P. Kouskousis, C. M. Rollinson, S. A. Wade, G. W. Baxter, and S. F. Collins, “Fabrication of a π-phase-shifted fiber Bragg grating at twice the Bragg wavelength with the standard phase mask technique,” Opt. Lett. 34, 2021–2023 (2009).
[CrossRef]

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (Australian Institute of Physics, Australian Optical Society, and Engineers Australia, 2010), p. 659.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale, and D. Reid, “Study and analysis of submicron-period grating formation on polymers ablated using a KrF laser irradiated phase mask,” Appl. Phys. Lett. 64, 3389–3391 (1994).
[CrossRef]

T. A. Strasser, T. Erdogan, A. E. White, V. Mizrahi, and P. J. Lemaire, “Ultraviolet laser fabrication of strong, nearly polarization-independent Bragg reflectors in,” Appl. Phys. Lett. 65, 3308 (1994).
[CrossRef]

Electron. Lett. (2)

D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29, 566–568 (1993).
[CrossRef]

P. E. Dyer, R. J. Farley, R. Giedl, K. C. Byron, and D. Reid, “High reflectivity fibre gratings produced by incubated damage using a 193 nm ArF laser,” Electron. Lett. 30, 860–862 (1994).
[CrossRef]

J. Electron. Sci. Tech. China (1)

S. P. Yam, Z. Brodzeli, S. A. Wade, G. W. Baxter, and S. F. Collins, “Occurrence of features of fiber Bragg grating spectra having a wavelength corresponding to the phase mask periodicity,” J. Electron. Sci. Tech. China 6, 458–461 (2008).

J. Lightwave Technol. (2)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Effects of the zeroth-order diffraction of a phase mask on Bragg gratings,” J. Lightwave Technol. 17, 2361–2365 (1999).
[CrossRef]

J. Phys. III (1)

B. Poumellec and F. Kherbouche, “The photorefractive Bragg gratings in the fibers for telecommunications,” J. Phys. III 6, 1595–1624 (1996).
[CrossRef]

Laser Photon. Rev. (1)

J. Canning, “Fibre gratings and devices for sensors and lasers,” Laser Photon. Rev. 2, 275–289 (2008).
[CrossRef]

Opt. Commun. (4)

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Opt. Commun. 115, 327–334 (1995).
[CrossRef]

P. E. Dyer, R. J. Farley, and R. Giedl, “Analysis and application of a 0/1 order Talbot interferometer for 193 nm laser grating formation,” Opt. Commun. 129, 98–108 (1996).
[CrossRef]

C. M. Rollinson, S. A. Wade, N. M. Dragomir, G. W. Baxter, S. F. Collins, and A. Roberts, “Reflections near 1030 nm from 1540 nm fibre Bragg gratings: evidence of a complex refractive index structure,” Opt. Commun. 256, 310–318 (2005).
[CrossRef]

W. X. Xie, M. Douay, P. Bernage, P. Niay, J. F. Bayon, and T. Georges, “Second order diffraction efficiency of Bragg gratings written within germanosilicate fibres,” Opt. Commun. 101, 85–91 (1993).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Other (3)

C. M. Rollinson, S. A. Wade, N. M. Dragomir, A. Roberts, G. W. Baxter, and S. F. Collins, “Three parameter sensing with a single Bragg grating in non-birefringent fiber,” in Proceedings of Topical Meeting on Bragg Gratings, Poling, and Photosensitivity (BGPP) (Engineers Australia, 2005), pp. 92–94.

S. P. Yam, G. W. Baxter, S. A. Wade, and S. F. Collins, “Modelling of an alternative pi-phase-shifted fibre Bragg grating operating at twice the Bragg wavelength,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (Australian Institute of Physics, Australian Optical Society, and Engineers Australia, 2010), p. 659.

A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental arrangement used for the simultaneous measurement of transmission spectra at λ B and 2 λ B / 3 during fabrication using an erbium-doped fiber broadband source (Er BBS) and a superluminescent diode (SLD) operating near 1050 nm, respectively.

Fig. 2.
Fig. 2.

Simulated intensity distributions behind UV irradiated phase masks in the region in which the fiber core lies during grating fabrication: (a) standard and (b) custom phase masks. The images represent a physical area of 10 × 10 μm . Linescans through the maximum intensity parallel to the phase mask in z for (c) standard and (d) custom phase masks. (e) Linescans through the maximum intensity perpendicular to the phase mask in x for standard and custom masks.

Fig. 3.
Fig. 3.

Spectral properties FBGs fabricated using a standard phase mask in the two fiber types. Transmission spectra measured after fabrication of grating A: (a) at λ B and (b) at 2 λ B / 3 ; and of grating B: (c) at λ B and (d) at 2 λ B / 3 .

Fig. 4.
Fig. 4.

Measured and modeled reflectance growth of spectral features at λ B and 2 λ B / 3 of grating A: (a) with fits for λ B as m = 1 of a Λ pm / 2 grating, for λ B as m = 2 of a Λ pm grating, and for 2 λ B / 3 as m = 3 of a Λ pm grating; (b) with fits for λ B as a combination of both harmonic components and for 2 λ B / 3 as m = 3 of a Λ pm grating.

Fig. 5.
Fig. 5.

Measured and modeled reflectance growth of spectral features at λ B and 2 λ B / 3 of grating B: (a) with fits for λ B as m = 1 of a Λ pm / 2 grating, for λ B as m = 2 of a Λ pm grating and for 2 λ B / 3 as m = 3 of a Λ pm grating; (b) with fits for λ B as a combination of both harmonic components and for 2 λ B / 3 as m = 3 of a Λ pm grating.

Fig. 6.
Fig. 6.

Spectral properties of FBGs fabricated using a custom-made phase mask in the two fiber types. Transmission spectra measured after fabrication of grating C: (a) at λ B and (b) at 2 λ B / 3 ; and grating D: (c) at λ B and (d) at 2 λ B / 3 .

Fig. 7.
Fig. 7.

Measured and modeled reflectance growth of spectral features at λ B and 2 λ B / 3 of grating C: (a)  with fits for λ B as m = 1 of a Λ pm / 2 grating, for λ B as m = 2 of a Λ pm grating and for 2 λ B / 3 as m = 3 of a Λ pm grating; (b) with fits for λ B as a combination of both harmonic components and for 2 λ B / 3 as m = 3 of a Λ pm grating (low fluence data omitted due to interruption during inscription).

Fig. 8.
Fig. 8.

Measured and modeled reflectance growth of spectral features at λ B and 2 λ B / 3 of grating D—with fits for λ B as m = 1 of a Λ pm / 2 grating, for λ B as m = 2 of a Λ pm grating and for 2 λ B / 3 as m = 3 of a Λ pm grating.

Fig. 9.
Fig. 9.

DIC images showing the imprinted Talbot diffraction patterns of the type I FBGs investigated written with (a) phase mask in telecommunications fiber (grating A), (b) standard phase mask in smaller core fiber (grating B), (c) custom-made phase mask in telecommunications fiber (grating C), and (d) custom-made phase mask in smaller core fiber (grating D). The images are approximately 47 × 14 μm .

Tables (3)

Tables Icon

Table 1. Details of the Standard and Custom-Made Phase Masks, Their Measured Diffraction Orders, and the Deduced Spectral Components of the Simulated Diffraction Patterns in Fig. 2

Tables Icon

Table 2. Measured and Calculated Parameters of the Four Gratings Used in This Study

Tables Icon

Table 3. Summary of the Grating Properties and the Modeled Contributions of Spectral Components to the Reflectance Growth for Spectral Features at λ B

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ B ( m ) = 2 m n eff Λ ,
R m ( l , λ m ) = tanh 2 ( π Δ n m l η ( λ m ) λ m ) ,
Δ n ( z ) = Δ n 0 + Δ n 1 cos ( 2 π z Λ + φ 1 ) + Δ n 2 cos ( 4 π z Λ + φ 2 ) + Δ n 3 cos ( 6 π z Λ + φ 3 ) , 0 z l , Δ n ( z ) = 0 , z > l ,
Δ n ( z , N ) = Δ n 0 ( 1 e k N ( 1 + cos ( 2 π z Λ ) ) ) ,
Δ n m ( z , N ) = 2 Λ 0 Λ Δ n 0 ( 1 e k N ( 1 + cos ( 2 π z Λ ) ) ) × cos ( 2 m π z Λ ) d z , for ( m = 1 , 2 , 3 ) .
Δ n T = a Δ n 1 ( λ B ) + b Δ n 2 ( λ B ) ,
R ( l , λ B ) = tanh 2 ( π Δ n T l η ( λ B ) λ B ) .

Metrics