Abstract

We present an eigenmode expansion technique for calculating the properties of a dipole emitter inside a micropillar. We consider a solution domain of infinite extent, implying no outer boundary conditions for the electric field, and expand the field on analytic eigenmodes. In contrast to finite-sized simulation domains, this avoids the issue of parasitic reflections from artificial boundaries. We compute the Purcell factor in a two-dimensional micropillar and explore two discretization techniques for the continuous radiation modes. Specifically, an equidistant and a nonequidistant discretization are employed, and while both converge, only the nonequidistant discretization exhibits uniform convergence. These results demonstrate that the method leads to more accurate results than existing simulation techniques and constitutes a promising basis for further work.

© 2012 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Open-geometry Fourier modal method: modeling nanophotonic structures in infinite domains

Teppo Häyrynen, Jakob Rosenkrantz de Lasson, and Niels Gregersen
J. Opt. Soc. Am. A 33(7) 1298-1306 (2016)

Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function

Yongpin P. Chen, Wei E. I. Sha, Wallace C. H. Choy, Lijun Jiang, and Weng Cho Chew
Opt. Express 20(18) 20210-20221 (2012)

Three-dimensional integral equation approach to light scattering, extinction cross sections, local density of states, and quasi-normal modes

Jakob Rosenkrantz de Lasson, Jesper Mørk, and Philip Trøst Kristensen
J. Opt. Soc. Am. B 30(7) 1996-2007 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription