Abstract

In this paper, an evolutionary algorithm based optimization scheme is proposed to realize uniform received power and illumination distribution on the communication floor for fully diffuse indoor visible light communication. Simulation results show that in three distributed lighting configurations, by dynamically modifying the relative optical intensity of transmitters the dynamic range of the received power, referenced against the peak received power, can be reduced to about 40.0% while the uniformity illuminance ratio can be improved up to about 0.70 with the impact to the root mean square delay spread and bandwidth being negligible. Furthermore, the relationship between the field of view of the receivers and the optimization performance is presented as well.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Haruyama, “Progress of visible light communication,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThH2.
  2. J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).
  3. F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
    [CrossRef]
  4. J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.
  5. J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K. D. Langer, “Implementation of a real-time DMT-based 100  Mbit/s visible-light link,” in Proceedings of the 36th European Conference on Optical Communication, ECOC’2010 (Reginoe Piemonte, 2010), pp. 1–5.
  6. J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.
  7. Smart Lighting Engineering Center, Boston University, http://smartlighting.bu.edu .
  8. Center for Ubiquitous Communication by Light (UC-Light), University of California Multicampus Research Program and Initiatives (MRPI), http://www.uclight.ucr.edu .
  9. K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of Communication System Networks and Signal Processing, CSNDSP’2010 (IEEE, 2010), pp. 621–625.
  10. J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).
  11. H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
    [CrossRef]
  12. T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization for indoor visible-light wireless communication systems,” in Proceedings of the 11th Asia-Pacific Conference on Communications, APCC ’05 (IEICE Communication Society, 2005), pp. 294–298.
  13. H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
    [CrossRef]
  14. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet–artificial neural network receiver for indoor optical wireless communications,” IEEE J. Lightwave Technol. 29, 2651–2659 (2011).
    [CrossRef]
  15. L. Nagy and Z. Szalay, “Global optimization of indoor radio coverage,” in Proceedings of Applied Electromagnetics and Communications, ICECom2010 (The Faculty of Electrical Engineering and Computing, University of Zagreb, and KoREMA, 2010), pp. 1–4.
  16. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light wireless communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
    [CrossRef]
  17. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
    [CrossRef]
  18. T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
    [CrossRef]
  19. J. W. Walewski, IEEE P208.15.7 Standard, “Health impact of light flicker: implications for visible-light communications,” IEEE, 2008.
  20. G. Ntogari, T. Kamalakis, J. W. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” J. Opt. Commun. Netw. 3, 56–65(2011).
    [CrossRef]
  21. T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Trans. Evol. Comput. 1, 3–17 (1997).
    [CrossRef]
  22. F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, 2nd ed. (Springer, 2002), pp. 9–32.
  23. F. O’Karray and C. W. D. Silva, Soft Computing and Intelligent Systems Design: Theory, Tools, and Applications (Pearson/Addison-Wesley, 2004).
  24. M. D. Higgens, R. J. Green, and M. S. Leeson, “Genetic algorithm channel control for indoor optical wireless communications,” in Proceedings of Applied Electromagnetics and Communications, ICTON2008 (IEEE, 2008), pp. 1–4.

2011

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet–artificial neural network receiver for indoor optical wireless communications,” IEEE J. Lightwave Technol. 29, 2651–2659 (2011).
[CrossRef]

G. Ntogari, T. Kamalakis, J. W. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” J. Opt. Commun. Netw. 3, 56–65(2011).
[CrossRef]

2010

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).

2009

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
[CrossRef]

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
[CrossRef]

2008

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

2004

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light wireless communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[CrossRef]

1997

T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Trans. Evol. Comput. 1, 3–17 (1997).
[CrossRef]

1993

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[CrossRef]

Angelova, M.

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet–artificial neural network receiver for indoor optical wireless communications,” IEEE J. Lightwave Technol. 29, 2651–2659 (2011).
[CrossRef]

Bäck, T.

T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Trans. Evol. Comput. 1, 3–17 (1997).
[CrossRef]

Barry, J. R.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[CrossRef]

Bergmans, J. W. M.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
[CrossRef]

Buttner, A.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

Chen, G.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of Communication System Networks and Signal Processing, CSNDSP’2010 (IEEE, 2010), pp. 621–625.

Cui, K.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of Communication System Networks and Signal Processing, CSNDSP’2010 (IEEE, 2010), pp. 621–625.

Delgado, F.

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

Faulkner, G.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

Fernandez, L.

J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K. D. Langer, “Implementation of a real-time DMT-based 100  Mbit/s visible-light link,” in Proceedings of the 36th European Conference on Optical Communication, ECOC’2010 (Reginoe Piemonte, 2010), pp. 1–5.

Ghassemlooy, Z.

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet–artificial neural network receiver for indoor optical wireless communications,” IEEE J. Lightwave Technol. 29, 2651–2659 (2011).
[CrossRef]

Habel, K.

J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K. D. Langer, “Implementation of a real-time DMT-based 100  Mbit/s visible-light link,” in Proceedings of the 36th European Conference on Optical Communication, ECOC’2010 (Reginoe Piemonte, 2010), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

Hammel, U.

T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Trans. Evol. Comput. 1, 3–17 (1997).
[CrossRef]

Haruyama, S.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
[CrossRef]

S. Haruyama, “Progress of visible light communication,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThH2.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization for indoor visible-light wireless communication systems,” in Proceedings of the 11th Asia-Pacific Conference on Communications, APCC ’05 (IEICE Communication Society, 2005), pp. 294–298.

Jimenez, R. P.

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

Jung, D.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

Kahn, J. M.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[CrossRef]

Kamalakis, T.

Komine, T.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
[CrossRef]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light wireless communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[CrossRef]

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization for indoor visible-light wireless communication systems,” in Proceedings of the 11th Asia-Pacific Conference on Communications, APCC ’05 (IEICE Communication Society, 2005), pp. 294–298.

Kottke, C.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K. D. Langer, “Implementation of a real-time DMT-based 100  Mbit/s visible-light link,” in Proceedings of the 36th European Conference on Optical Communication, ECOC’2010 (Reginoe Piemonte, 2010), pp. 1–5.

Kottko, C.

J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).

Krause, W. J.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[CrossRef]

Langer, K. D.

J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K. D. Langer, “Implementation of a real-time DMT-based 100  Mbit/s visible-light link,” in Proceedings of the 36th European Conference on Optical Communication, ECOC’2010 (Reginoe Piemonte, 2010), pp. 1–5.

Lee, E. A.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[CrossRef]

Lee, J. H.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
[CrossRef]

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization for indoor visible-light wireless communication systems,” in Proceedings of the 11th Asia-Pacific Conference on Communications, APCC ’05 (IEICE Communication Society, 2005), pp. 294–298.

Lee, K.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

Le-Minh, H.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

Linnartz, J. P. M. G.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
[CrossRef]

Messerschmitt, D. G.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[CrossRef]

Nagy, L.

L. Nagy and Z. Szalay, “Global optimization of indoor radio coverage,” in Proceedings of Applied Electromagnetics and Communications, ICECom2010 (The Faculty of Electrical Engineering and Computing, University of Zagreb, and KoREMA, 2010), pp. 1–4.

Nakagawa, M.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
[CrossRef]

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light wireless communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[CrossRef]

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization for indoor visible-light wireless communication systems,” in Proceedings of the 11th Asia-Pacific Conference on Communications, APCC ’05 (IEICE Communication Society, 2005), pp. 294–298.

Nerreter, S.

J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

Ntogari, G.

O’Brien, D. C.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

O’Karray, F.

F. O’Karray and C. W. D. Silva, Soft Computing and Intelligent Systems Design: Theory, Tools, and Applications (Pearson/Addison-Wesley, 2004).

Oh, Y.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

Quintana, C.

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

Quintana, I.

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

Rabadan, J. A.

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

Rajbhandari, S.

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet–artificial neural network receiver for indoor optical wireless communications,” IEEE J. Lightwave Technol. 29, 2651–2659 (2011).
[CrossRef]

Rietman, R.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
[CrossRef]

Roberts, R. D.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of Communication System Networks and Signal Processing, CSNDSP’2010 (IEEE, 2010), pp. 621–625.

Rothlauf, F.

F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, 2nd ed. (Springer, 2002), pp. 9–32.

Rufo, J.

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

Schenk, T. C. W.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
[CrossRef]

Schwefel, H. P.

T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Trans. Evol. Comput. 1, 3–17 (1997).
[CrossRef]

Silva, C. W. D.

F. O’Karray and C. W. D. Silva, Soft Computing and Intelligent Systems Design: Theory, Tools, and Applications (Pearson/Addison-Wesley, 2004).

Sphicopoulos, T.

Szalay, Z.

L. Nagy and Z. Szalay, “Global optimization of indoor radio coverage,” in Proceedings of Applied Electromagnetics and Communications, ICECom2010 (The Faculty of Electrical Engineering and Computing, University of Zagreb, and KoREMA, 2010), pp. 1–4.

Vucic, J.

J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K. D. Langer, “Implementation of a real-time DMT-based 100  Mbit/s visible-light link,” in Proceedings of the 36th European Conference on Optical Communication, ECOC’2010 (Reginoe Piemonte, 2010), pp. 1–5.

Walewski, J. W.

G. Ntogari, T. Kamalakis, J. W. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” J. Opt. Commun. Netw. 3, 56–65(2011).
[CrossRef]

J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

J. W. Walewski, IEEE P208.15.7 Standard, “Health impact of light flicker: implications for visible-light communications,” IEEE, 2008.

Won, E. T.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

Xu, Z.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of Communication System Networks and Signal Processing, CSNDSP’2010 (IEEE, 2010), pp. 621–625.

Yang, H.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
[CrossRef]

Zeng, L.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

IEEE Commun. Lett.

F. Delgado, I. Quintana, J. Rufo, J. A. Rabadan, C. Quintana, and R. P. Jimenez, “Design and implementation of an Ethernet-VLC interface for broadcast transmissions,” IEEE Commun. Lett. 14, 1089–1091 (2010).
[CrossRef]

IEEE J. Lightwave Technol.

J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” IEEE J. Lightwave Technol. 26, 3883–3892 (2008).

J. Vučić, C. Kottko, S. Nerreter, K. D. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” IEEE J. Lightwave Technol. 28, 3512–3518 (2010).

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Wavelet–artificial neural network receiver for indoor optical wireless communications,” IEEE J. Lightwave Technol. 29, 2651–2659 (2011).
[CrossRef]

IEEE J. Sel. Areas Commun.

J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for indoor wireless optical channels,” IEEE J. Sel. Areas Commun. 11, 367–379 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Le-Minh, D. C. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100  Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21, 1063–1065 (2009).
[CrossRef]

IEEE Trans. Consum. Electron.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light wireless communication system using LED lights,” IEEE Trans. Consum. Electron. 50, 100–107 (2004).
[CrossRef]

IEEE Trans. Evol. Comput.

T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation: comments on the history and current state,” IEEE Trans. Evol. Comput. 1, 3–17 (1997).
[CrossRef]

IEEE Trans. Signal Process.

H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “Uniform illumination rendering using an array of LEDs: a signal processing perspective,” IEEE Trans. Signal Process. 57, 1044–1057 (2009).
[CrossRef]

IEEE Trans. Wirel. Commun.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment,” IEEE Trans. Wirel. Commun. 8, 2892–2900 (2009).
[CrossRef]

J. Opt. Commun. Netw.

Other

J. W. Walewski, IEEE P208.15.7 Standard, “Health impact of light flicker: implications for visible-light communications,” IEEE, 2008.

T. Komine, J. H. Lee, S. Haruyama, and M. Nakagawa, “Adaptive equalization for indoor visible-light wireless communication systems,” in Proceedings of the 11th Asia-Pacific Conference on Communications, APCC ’05 (IEICE Communication Society, 2005), pp. 294–298.

S. Haruyama, “Progress of visible light communication,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OThH2.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “125  Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proceedings of the 35th European Conference on Optical Communication, ECOC’2009 (Austrian Electrotechnical Association, 2009), pp. 1–5.

J. Vucic, L. Fernandez, C. Kottke, K. Habel, and K. D. Langer, “Implementation of a real-time DMT-based 100  Mbit/s visible-light link,” in Proceedings of the 36th European Conference on Optical Communication, ECOC’2010 (Reginoe Piemonte, 2010), pp. 1–5.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K. D. Langer, and J. W. Walewski, “230  Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proceedings of Optical Fiber Communications, OFC’2010 (Optical Society of America, 2010), pp. 1–3.

Smart Lighting Engineering Center, Boston University, http://smartlighting.bu.edu .

Center for Ubiquitous Communication by Light (UC-Light), University of California Multicampus Research Program and Initiatives (MRPI), http://www.uclight.ucr.edu .

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Line-of-sight visible light communication system design and demonstration,” in Proceedings of Communication System Networks and Signal Processing, CSNDSP’2010 (IEEE, 2010), pp. 621–625.

F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, 2nd ed. (Springer, 2002), pp. 9–32.

F. O’Karray and C. W. D. Silva, Soft Computing and Intelligent Systems Design: Theory, Tools, and Applications (Pearson/Addison-Wesley, 2004).

M. D. Higgens, R. J. Green, and M. S. Leeson, “Genetic algorithm channel control for indoor optical wireless communications,” in Proceedings of Applied Electromagnetics and Communications, ICTON2008 (IEEE, 2008), pp. 1–4.

L. Nagy and Z. Szalay, “Global optimization of indoor radio coverage,” in Proceedings of Applied Electromagnetics and Communications, ICECom2010 (The Faculty of Electrical Engineering and Computing, University of Zagreb, and KoREMA, 2010), pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic view of indoor VLC system with distributed LED arrays.

Fig. 2.
Fig. 2.

(a) Layout of LED arrays for Configuration A with corresponding optimization factors marked. (b) Chromosome structure composed of optimization factors.

Fig. 3.
Fig. 3.

Proposed algorithm performance in Configuration A with 7×7 LED array pattern. (a) Nonoptimized power distribution. (b) Optimized power distribution. (c) Nonoptimized illuminance distribution. (d) Optimized illuminance distribution. (e) RMS delay spread distribution without optimization operation. (f) RMS delay spread distribution with optimization operation. (g) Bandwidth distribution without optimization operation. (h) Bandwidth distribution with optimization operation.

Fig. 4.
Fig. 4.

Convergence curves of the EA and LSA.

Fig. 5.
Fig. 5.

(a) Layout of LED arrays for Configuration B. (b) Layout of LED arrays for Configuration C.

Tables (6)

Tables Icon

Table 1. Optimization Performance for Configuration A with Various LED Array Patterns

Tables Icon

Table 2. Optimization Performance for Configuration B with Various LED Array Patterns

Tables Icon

Table 3. Optimization Performance for Configuration C with Various LED Array Patterns

Tables Icon

Table 4. Optimization Performance for Configuration A with Various Field of View Values

Tables Icon

Table 5. Optimization Performance for Configuration B with Various Field of View Values

Tables Icon

Table 6. Optimization Performance for Configuration C with Various Field of View Values

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Y(t)=γX(t)h(t)+N(t),
Pt=p(λ)dλ=limT12TTTX(t)dt,
Pr(Rj)=i=1I[PtH(0)(0;Si,Rj)+AsurPtHref(0;Si,Rj)],
H(0)(0;Si,Rj)={(m+1)A2πDd2cosm(ϕ)Ts(ψ)g(ψ)cos(ψ),0ψΨc,0,ψ>Ψc,
E=Φ/A=n=0En,
Φ=683lmW380nm720nmp(λ)V(λ)dλ,
E0=iI(0)cosmϕicosψi/di2.
En=wallEn1ρcosϕcosψdAwall/πd2.
Pr(Rj)=l=1Ilamp[kli=1NLEDPtH(0;Si,Rj)+Asuri=1NLEDklPtHref(0;Si,Rj)],
Pr(R1)Pr(R2)Pr(R3)Pr(RJ).
O(Kv)={100100[maxPr(Kv)minPr(Kv)maxPr(Kv)]}%,
pvsel=O(Kv)/i=1nO(Ki).

Metrics