Abstract

Stationary Fourier transform spectrometry is an interesting concept for building reliable field or embedded spectroradiometers, especially for the mid- and far- IR. Here, a very compact configuration of a cryogenic stationary Fourier transform IR (FTIR) spectrometer is investigated, where the interferometer is directly integrated in the focal plane array (FPA). We present a theoretical analysis to explain and describe the fringe formation inside the FTIR-FPA structure when illuminated by an extended source positioned at a finite distance from the detection plane. The results are then exploited to propose a simple front lens design compatible with a handheld package.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992).
    [CrossRef]
  2. S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010).
    [CrossRef]
  3. Y. Ferrec, S. Rommeluère, D. Henry, and N. Guérineau, “First results from Mistere, a cryogenic static Fourier-transform spectroradiometer,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB6.
  4. N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004).
    [CrossRef]
  5. H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
    [CrossRef]
  6. S. Rommeluère, N. Guérineau, R. Haidar, J. Deschamps, E. De Borniol, A. Million, J-P Chamonal, and G. Destefanis, “Infrared focal plane array with a built-in stationary Fourier-transform spectrometer: basic concepts,” Opt. Lett. 33, 1062–1064(2008).
    [CrossRef]
  7. M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
    [CrossRef]
  8. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972), pp. 1–15.
  9. A. R. Korb, “Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Appl. Opt. 35, 1679–1692 (1996).
    [CrossRef]
  10. W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
    [CrossRef]
  11. F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
    [CrossRef]
  12. S. Rommeluère, “Intégration d′un micro-spectromètre statique par transformée de Fourier sur un plan focal infrarouge,” Ph.D. thesis (Université Paris Sud, 2007).
  13. P. Voge and J. Primot, “Simple infrared Fourier transform spectrometer adapted to low light level and high-speed operation,” Opt. Eng. 37, 2459–2466 (1998).
    [CrossRef]
  14. N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
    [CrossRef]
  15. M. Françon, “Localization and visibility of fringes,” in Optical Interferometry (Academic, 1966), pp. 62–67.
  16. G. Fortunato and P. Jacquinot, “Recherche de l’étendue maximale dans les interféromètres,” C. R. Acad. Sci. Paris 274-B, 688–691 (1972).
  17. J. C. Wyant, “Fringe localization,” Appl. Opt. 17, 1853 (1978).
    [CrossRef]
  18. P. Hariharan, Optical Interferometry (Academic, 1986), p. 23.
  19. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  20. In fact, one should also take into account the optical path to go from M to its image M1 by the first arm of the interferometer, and the one to go from M to its image M2 by the second arm of the interferometer. Indeed, the stigmatism hypothesis between M and M1, for instance, means only that the path to go from M to M1 does not depend on the considered ray, but it does depend on point M or on the considered arm. However, this is only a phase term, and as long as we are interested mainly in the contrast of the fringes, we will omit this term.
  21. Considering large incident angles, we should use the Fresnel formula for each polarization. Nevertheless, in the rest of this article, we will only use the Fresnel coefficients under normal incidence.

2010 (4)

S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010).
[CrossRef]

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
[CrossRef]

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

2008 (1)

2005 (1)

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

2004 (1)

N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004).
[CrossRef]

2002 (1)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

1998 (1)

P. Voge and J. Primot, “Simple infrared Fourier transform spectrometer adapted to low light level and high-speed operation,” Opt. Eng. 37, 2459–2466 (1998).
[CrossRef]

1996 (1)

1992 (1)

J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992).
[CrossRef]

1978 (1)

1972 (1)

G. Fortunato and P. Jacquinot, “Recherche de l’étendue maximale dans les interféromètres,” C. R. Acad. Sci. Paris 274-B, 688–691 (1972).

Armellin, C.

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972), pp. 1–15.

Bernabé, S.

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Buijs, H. L.

J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992).
[CrossRef]

Carter, A. C.

S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010).
[CrossRef]

Chamonal, J-P

Chavel, P.

F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
[CrossRef]

Clerc, P. A.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Cymbalista, P.

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004).
[CrossRef]

Dändliker, R.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

De Borniol, E.

de la Barrière, F.

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

De Rooij, N.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Dellmann, L.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Deschamps, J.

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

S. Rommeluère, N. Guérineau, R. Haidar, J. Deschamps, E. De Borniol, A. Million, J-P Chamonal, and G. Destefanis, “Infrared focal plane array with a built-in stationary Fourier-transform spectrometer: basic concepts,” Opt. Lett. 33, 1062–1064(2008).
[CrossRef]

Destefanis, G.

Druart, G.

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

Fendler, M.

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

Ferrec, Y.

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

Y. Ferrec, S. Rommeluère, D. Henry, and N. Guérineau, “First results from Mistere, a cryogenic static Fourier-transform spectroradiometer,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB6.

Fortunato, G.

G. Fortunato and P. Jacquinot, “Recherche de l’étendue maximale dans les interféromètres,” C. R. Acad. Sci. Paris 274-B, 688–691 (1972).

Françon, M.

M. Françon, “Localization and visibility of fringes,” in Optical Interferometry (Academic, 1966), pp. 62–67.

Gillard, F.

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
[CrossRef]

Giroux, J.

J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992).
[CrossRef]

Guérineau, N.

F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
[CrossRef]

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

S. Rommeluère, N. Guérineau, R. Haidar, J. Deschamps, E. De Borniol, A. Million, J-P Chamonal, and G. Destefanis, “Infrared focal plane array with a built-in stationary Fourier-transform spectrometer: basic concepts,” Opt. Lett. 33, 1062–1064(2008).
[CrossRef]

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004).
[CrossRef]

Y. Ferrec, S. Rommeluère, D. Henry, and N. Guérineau, “First results from Mistere, a cryogenic static Fourier-transform spectroradiometer,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB6.

Guldimann, B.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Haidar, R.

Hariharan, P.

P. Hariharan, Optical Interferometry (Academic, 1986), p. 23.

Henry, D.

Y. Ferrec, S. Rommeluère, D. Henry, and N. Guérineau, “First results from Mistere, a cryogenic static Fourier-transform spectroradiometer,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB6.

Herzig, H. P.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Jacquinot, P.

G. Fortunato and P. Jacquinot, “Recherche de l’étendue maximale dans les interféromètres,” C. R. Acad. Sci. Paris 274-B, 688–691 (1972).

Jung, T. M.

S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010).
[CrossRef]

Kaplan, S. G.

S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010).
[CrossRef]

Korb, A. R.

Lamarre, D.

J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992).
[CrossRef]

Lasfargues, G.

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

Lhermet, N.

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

Manzardo, O.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Martin, M-A

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

Marxer, C.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

McKinnon, J.

J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992).
[CrossRef]

Million, A.

Noell, W.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Primot, J.

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004).
[CrossRef]

P. Voge and J. Primot, “Simple infrared Fourier transform spectrometer adapted to low light level and high-speed operation,” Opt. Eng. 37, 2459–2466 (1998).
[CrossRef]

Ribot, H.

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

Rommeluère, S.

F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
[CrossRef]

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

S. Rommeluère, N. Guérineau, R. Haidar, J. Deschamps, E. De Borniol, A. Million, J-P Chamonal, and G. Destefanis, “Infrared focal plane array with a built-in stationary Fourier-transform spectrometer: basic concepts,” Opt. Lett. 33, 1062–1064(2008).
[CrossRef]

Y. Ferrec, S. Rommeluère, D. Henry, and N. Guérineau, “First results from Mistere, a cryogenic static Fourier-transform spectroradiometer,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB6.

S. Rommeluère, “Intégration d′un micro-spectromètre statique par transformée de Fourier sur un plan focal infrarouge,” Ph.D. thesis (Université Paris Sud, 2007).

Sauer, H.

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

Suffis, S.

N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004).
[CrossRef]

Taboury, J.

F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
[CrossRef]

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

Voge, P.

P. Voge and J. Primot, “Simple infrared Fourier transform spectrometer adapted to low light level and high-speed operation,” Opt. Eng. 37, 2459–2466 (1998).
[CrossRef]

Weible, K.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Woods, S. I.

S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010).
[CrossRef]

Wyant, J. C.

Appl. Opt. (2)

C. R. Acad. Sci. Paris (1)

G. Fortunato and P. Jacquinot, “Recherche de l’étendue maximale dans les interféromètres,” C. R. Acad. Sci. Paris 274-B, 688–691 (1972).

IEEE J. Sel. Top. Quantum Electron. (1)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. Marxer, K. Weible, R. Dändliker, and N. De Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8, 148–154 (2002).
[CrossRef]

Opt. Eng. (1)

P. Voge and J. Primot, “Simple infrared Fourier transform spectrometer adapted to low light level and high-speed operation,” Opt. Eng. 37, 2459–2466 (1998).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (7)

M. Fendler, G. Lasfargues, S. Bernabé, G. Druart, F. de la Barrière, S. Rommeluère, N. Guérineau, N. Lhermet, and H. Ribot, “Integration of advanced optical functions on the focal plane array for very compact MCT-based micro cameras,” Proc. SPIE 7660, 766022 (2010).
[CrossRef]

N. Guérineau, G. Druart, F. de la Barrière, F. Gillard, S. Rommeluère, J. Primot, J. Deschamps, J. Taboury, and M. Fendler, “Micro-camera and micro-spectrometer designs adapted to large infrared focal plane arrays,” Proc. SPIE 7716, 77160N (2010).
[CrossRef]

F. Gillard, N. Guérineau, S. Rommeluère, J. Taboury, and P. Chavel, “Fundamental performances of a micro stationary Fourier transform spectrometer,” Proc. SPIE 7716, 77162E (2010).
[CrossRef]

J. Giroux, D. Lamarre, J. McKinnon, and H. L. Buijs, “Commercial cryogenic Fourier transform spectrometer for emission measurements of materials,” Proc. SPIE 1575, 205–206 (1992).
[CrossRef]

S. G. Kaplan, S. I. Woods, T. M. Jung, and A. C. Carter, “Cryogenic Fourier transform infrared spectrometer from 4 to 20 micrometers,” Proc. SPIE 7739, 77394D (2010).
[CrossRef]

N. Guérineau, S. Suffis, P. Cymbalista, and J. Primot, “Conception of a stationary Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity,” Proc. SPIE 5249, 441–448 (2004).
[CrossRef]

H. Sauer, Y. Ferrec, C. Armellin, J. Taboury, P. Cymbalista, N. Guérineau, M-A Martin, and J. Primot, “Accurate modeling of optical system aberrations applied to the design of a stationary Fourier transform spectroradiometer,” Proc. SPIE 5962, 596212 (2005).
[CrossRef]

Other (8)

Y. Ferrec, S. Rommeluère, D. Henry, and N. Guérineau, “First results from Mistere, a cryogenic static Fourier-transform spectroradiometer,” in Fourier Transform Spectroscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB6.

S. Rommeluère, “Intégration d′un micro-spectromètre statique par transformée de Fourier sur un plan focal infrarouge,” Ph.D. thesis (Université Paris Sud, 2007).

M. Françon, “Localization and visibility of fringes,” in Optical Interferometry (Academic, 1966), pp. 62–67.

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972), pp. 1–15.

P. Hariharan, Optical Interferometry (Academic, 1986), p. 23.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

In fact, one should also take into account the optical path to go from M to its image M1 by the first arm of the interferometer, and the one to go from M to its image M2 by the second arm of the interferometer. Indeed, the stigmatism hypothesis between M and M1, for instance, means only that the path to go from M to M1 does not depend on the considered ray, but it does depend on point M or on the considered arm. However, this is only a phase term, and as long as we are interested mainly in the contrast of the fringes, we will omit this term.

Considering large incident angles, we should use the Fresnel formula for each polarization. Nevertheless, in the rest of this article, we will only use the Fresnel coefficients under normal incidence.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

“Monolithic” FTIR-FPA concept (left) and “hybrid” FTIR-FPA concept (right).

Fig. 2.
Fig. 2.

Optical layouts of a FTIR-FPA spectrometer: (a) configuration based on an afocal lens made of two lenses and the FTIR-FPA purposely tilted and (b) single-lens architecture compatible with the classic packaging of an IRFPA. As the collimating lens has been removed, the localization area is no longer a plane and thus cannot correspond to the FPA. This decreases the contrast of the detected fringes.

Fig. 3.
Fig. 3.

Surfaces of localization of fringes: (a) with an infinite distance to the source, (b) with a finite distance d to the source. In the latter case, and due to refractive effects, the area of localization approximates a circle only locally.

Fig. 4.
Fig. 4.

Geometrical construction of the rays to obtain fringes localized in the detection plane, for the monolithic FTIR-FPA (top) and for the hybrid FTIR-FPA (bottom). M1 and M2 are the images of M1 and M2 in the source space. When the (M1M2) line goes through the center of the source, then M belongs to the region of localization.

Fig. 5.
Fig. 5.

Geometry of the problem for a monolithic structure. Note that it is not the same incident ray that reaches M through the two arms of the interferometer (red ray for the first arm, blue ray for the second arm); M does not belong to the localization circle.

Fig. 6.
Fig. 6.

Top: Fringes are localized in M if its images M1 and M2 in the source space through the two arms of the interferometer (not shown on this figure) are aligned with the source center: r⃗M1/d1=r⃗M2/d2. Bottom: An appropriate orientation of the detection plane with respect to the source allows control of where this plane intersects the localization circle (at point M in this case), while the source aligned with the center C of the FTIR-FPA is maintained. Note that this drawing is only an approximation, since, strictly speaking, M does not belong to line (M1M2).

Fig. 7.
Fig. 7.

Monolithic FTIR-FPA contrast in the detection plane for d=25mm and r0=1mm (λ=3μm).

Fig. 8.
Fig. 8.

Hybrid FTIR-FPA contrast in the detection plane for d=25mm and r0=1mm (λ=3μm).

Fig. 9.
Fig. 9.

Angular acceptance of the FTIR-FPAs as a function of the distance from the source (λ=3μm). The degree of coherence is 63% over the whole FPA. The circles represent the angular diameter of a source at infinity, which would give the same minimum degree of coherence (see Eq. 5). Note that theses circles are calculated with Eq. (13), while we neglected the quadratic term of this integral to calculate the solid curves; on these latter, the effect of the approximation may become noticeable when the diameter of the source is close to the one indicated by the circles.

Fig. 10.
Fig. 10.

Minimum and mean degree of coherence for the hybrid FTIR-FPA.

Tables (1)

Tables Icon

Table 1. Basic Performance of Stationary FTIR Spectrometers

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

δmax=12dσ.
θmax=2dσσmax,
ηP(σ)=η0+ηscos(2πσδP),
dσ=12δmax=14×nint×Npix×pitch×tan(α).
θmax=nintn02dσσmax.
αcorrmonolithic=arcsin[n1n0sin(2α)]α2n1αn0,
αcorrhybrid=arcsin[n3n0sin(arcsin(n0n3sin2α)α)]α·(2n3n0).
I(M)=I(M1)+I(M2)+2I(M1)I(M2)|γ12|cos(α12).
C(M)=2I(M1)I(M2)|γ12|I(M1)+I(M2).
C(M)=2r1r21+(r1r2)2|γ12(M)|.
Mdetsourcemonolithic=(cos2α+sin2α/n10sinαcosα·(11/n1)00100sinαcosα·(11/n1)0sin2α+cos2α/n100001).
Mdetsourcehybrid=(cos2α+n3sin2α0sinαcosα·(n31)00100sinαcosα·(11/n3)0cos2α+sin2α/n3h·(11/n3)0001).
γ12(M)=exp(ik(d1d2))exp(iπλ(r⃗M12d1r⃗M22d2))×L(s⃗)exp(iπλ(1d11d2)s2)exp(2iπλ(r⃗M2d2r⃗M1d1)s⃗)d2sL˜(0).
r⃗M2d2r⃗M1d1=0.
|γ12(M)|=L(s⃗)exp(iπs2λdeq)d2sL(s⃗)d2s,
1deq=1d11d2δnint2d2,
|γ12(M)|=sinc(r022λdeq)sinc(r02δ2λd2nint2)
r02<λdeq,
|γ12|=|2J1[2πr0λ|r⃗M2d2r⃗M1d1|]2πr0λ(r⃗M2d2r⃗M1d1)|,

Metrics